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Abstract

Building information mediators (a.k.a. information agents) has been a very active area

of research in the information and data management community to address the problem

of integrating data from multiple sources such as databases or Web sources. An issue

with such mediators, particularly Web based mediators is that the speed of any mediator

application is heavily dependent on the remote sources being integrated, with often a very

large amount of time being spent in retrieving data from the remote sources.

I present an approach for optimizing the performance of information mediators by

locally materializing data. I present a framework for materializing data in a mediator

environment. The data is materialized selectively. I then present an approach for auto-

matically identifying the portion of data to materialize by considering several factors such

as the distribution of user queries, structure of Web sources and updates at the sources. I

present experimental results demonstrating the e�ectiveness of my approach using a ma-

terialization system that I implemented for the Ariadne mediator based on the ideas in my

thesis. I discuss how my work relates to previous work in materialization and caching in

database and Web server environments and also how my approach is applicable to several

other mediator systems. Finally I outline some directions for future work in this area.
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Chapter 1

Introduction

One of the frontier areas being pursued by database and information management re-

searchers for the past several years is building information mediators [Wiederhold, 1992]

a.k.a. information agents which are systems that can extract and integrate data from

multiple databases or semi-structured Web sources. The representative systems include

tsimmis [Hammer et al., 1995], Information Manifold [Ives et al., 1999], The Internet Soft-

bot [Etzioni and Weld, 1994], InfoSleuth [Bayardo et al., 1996], Infomaster [Genesereth et

al., 1997], disco [Tomasic et al., 1997], hermes [Adali et al., 1997], sims [Arens et al.,

1996] and Ariadne [Knoblock et al., 1998b]. The Ariadne project at USC/Information

Sciences Institute is concerned with building the technology and tools for quickly putting

together a mediator or information agent application that provides integrated structured

query access to multiple prespeci�ed Web sources.

For instance, consider a mediator application on information about countries (hereby

referred to as `the countries mediator') that provides integrated access to Web sources of

information about countries in the world. For the countries mediator, the set of sources

we provide access to is:

� The CIA World Factbook1 which provides interesting information about the geog-

raphy, people, government, economy etc. of each country in the world.

� The NATO homepage2 from which we can get a list of NATO member countries.

� The InfoNation3 source which provides statistical data about UN member countries.

We can use such a mediator application to answer interesting queries such as \Find

the defense expenditure and spending on education of all countries that have a national

1http://www.odci.gov/cia/publications/factbook/country.html
2http://www.nato.int/family/countries.htm
3http://www.un.org/Pubs/CyberSchoolBus/infonation/e infonation.htm
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product greater than 500 billion dollars." Note that it would be far more tedious and time

consuming for the user to gather this information himself, given that he can only browse

individual sources one at a time. As another example consider TheaterLoc [Barish et al.,

1999] which is also an Ariadne mediator application. TheaterLoc provides integrated access

toWeb sources about movies and theatres, an interactive map server depicting their various

locations and a video server from which users can see video trailers of movies playing at

the selected theatres. This application is available online at http://www.isi.edu/ariadne

Integrated access is provided to the following Web sources:

� http://www.cuisinenet.com (Cuisinenet) Information about restaurants in various

US cities.

� http://movies.yahoo.com/movies (Yahoo Movies) Theater and movie showtime in-

formation.

� http://www.hollywood.com (Hollywood.com) Movie previews source.

� http://www.geocode.com (E-TAK Geocoder) Geocodes street addresses.

� http://tiger.census.gov/cgi-bin/mapbrowse-tbl (US Census Map Server) Online in-

teractive map server.

A typical query to such an application might be \Find all the restaurants and theaters

in Beverly Hills and plot them on a map of that area."

The research problems in building information mediators that have been addressed

include information modeling [Knoblock et al., 1998b] for describing contents of di�er-

ent sources being integrated and also the integrated `view' of information provided over

the various sources, query planning to e�ciently generate high quality plans for retriev-

ing and integrating data from various sources [Ambite and Knoblock, 1998] and semi-

automatically generating wrappers that allow database like querying of semi-structured

Web sources [Ashish and Knoblock, 1997, Muslea et al., 1998].

An issue with building applications using Ariadne or other similar mediators is that the

speed of the resulting application is heavily dependent on the data sources. The response

time may be high even if the mediator query planner generates high quality information

gathering plans. This is mainly because to answer many queries a large number of Web

pages may need to be fetched over the network or the Web sources may be slow. Without

any kind of optimization i.e., assuming that all data must be fetched from the Web sources

in real time, the above query to the countries mediator \Find the defense expenditure and

2



spending on education of all countries that have a national product greater than 500 billion

dollars" can take several minutes to return an answer. This is because for this particular

query the mediator must retrieve the pages of all countries in the CIA World Factbook

to determine which ones have a national product greater than $500 billion, which takes a

large amount of time. Without optimization, a typical query to TheaterLoc such as \Find

all the restaurants and theaters in Beverly Hills and plot them on a map of that area."

also takes several minutes to return an answer. For this query, the mediator �rst �nds the

restaurants and theaters in Beverly hills (from the Web sources such as Zagats and Yahoo

movies) and then geocode each restaurant and theater so as to be able to plot it on a map

of the area. Geocoding the theaters and restaurants takes a large amount of time as the

Geocoder source is structured such that we can only geocode one restaurant or theater at

a time. The above examples are typical of most mediator applications where to answer

a query, often the time spent in gathering the data from the remote Web sources is very

high. This is for several reasons, either a large number of Web pages have to be retrieved

to answer the user query, the Web sources are structured such that retrieving data is time

consuming (e.g., the Geocoder), or a particular Web server is slow i.e., retrieving even a

single page can be very time consuming (e.g., the map server can take as much as two

minutes to return a single map).

An obvious approach to improving performance is to locally materialize data at the

mediator instead of retrieving it from the remote sources each time. This dissertation

presents a systematic approach to optimizing the performance of information mediators

by locally materializing data. The �rst contribution is presenting a framework for materi-

alizing data in a mediator environment. I then provide an argument for materializing data

selectively. Finally I present our approach to automatically identifying the portion of data

that must be materialized considering a combination of several factors. I now present the

outline of my approach in more detail.

1.1 Approach

The brute force approach would be for each mediator application to simply materialize

locally all the data in all the Web sources being integrated. This would no doubt speed up

the application considerably. However materializing all the data is impractical for several

reasons. First, the amount of space needed to store all the data locally could be very

large. Also we must take into account the fact that the data can get updated at the

original Web sources and the cost of keeping the materialized data consistent could be

3



very high. In fact by locally storing all the data, the mediator really degenerates into a

data warehouse, defeating the purpose of a mediator that provides access to information

in di�erent sources (and can scale to a large number of sources) rather than storing it all

locally. Finally, it is our hypotheses that a signi�cant performance gain can be achieved

by just materializing a small fraction of the data that the mediator can access. We make

this claim for two main reasons. First, for many mediator applications it is likely that

users will be more interested in querying some portions of the data than others. Thus

we could just materialize the portion of data frequently queried. Next, Web sources are

structured such that certain types of queries can be very expensive. In many cases we

could materialize just a small portion of data (explained more in detail later) that can

signi�cantly speed up the processing of the expensive queries. We thus argue that data

must be selectively materialized.

In the approach to optimizing mediator performance by selectively materializing data

there are two primary issues that must be addressed. First, what is the overall framework

for materializing data i.e., how do we represent and use the materialized data ? Next,

having argued that data must be selectively materialized, how do we automatically identify

the portion of data that is most useful to materialize? We now discuss our approach to

these problems.

1.1.1 Materialization Framework

For any kind of performance improvement system based on locally materializing or caching

data we need a framework for representing and using the materialized data. For instance

for database system caches we have page based schemes, tuple based schemes or recent

approaches based on semantic caching [Dar et al., 1996, Keller and Basu, 1996]. For

the mediator environment I have built upon an idea originally described in [Arens and

Knoblock, 1994]. The basic idea is to locally materialize useful data and de�ne it as

another information source for the mediator. The representation and use of materialized

data is done in a manner similar to that in semantic caching in databases where a semantic

description of the cached or materialized data is provided. The system reasons with the

semantic description to determine what portion of a query can be answered using the

materialized data.

I will �rst provide an overview of the Ariadne architecture with particular emphasis

on information modeling in information mediators, followed by a description of the overall

approach. The Ariadne architecture [Knoblock et al., 1998a] borrows heavily from that

of sims, sims is used to integrate data from mainly database systems whereas Ariadne
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is focussed on integrating semi-structured Web sources. In fact the sims architecture is

typical of several other mediator systems such as Information Manifold [Ives et al., 1999],

InfoSleuth [Bayardo et al., 1996], Infomaster [Genesereth et al., 1997] etc.

In the sims system we use the loom knowledge representation language [MacGregor,

1988] (we can also view this as a data model) for modeling data. The user is presented with

an integrated view of the information in several di�erent sources which is known as the

domain model. We describe the contents of the individual information sources in terms of

the domain model. A simple example is shown in Figure 1.1 (a). The white circle labeled

country represents a domain concept (equivalent of a class in an object-oriented model)

and the shaded circles represent sources. The arrows on the circles represent attributes of

the concepts. In this example the domain concept country provides an integrated view

over two sources of information about countries { factbook-country and infonation-

country. The user queries the integrated view i.e., concepts in the domain model and the

query planner in the mediator generates plans to retrieve the requested information from

one or more sources. Please refer to [Arens et al., 1996] for a more detailed description of

sims.
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(a)                                                                                                      (b)

Figure 1.1: Information modeling in SIMS

We identify useful classes of information to materialize, materialize the data in these

classes in a database local to the mediator, and de�ne these classes as auxiliary information

sources that the mediator can access [Ashish et al., 1998, Ashish et al., 1999]. For instance

in an information about countries application4 suppose we determined that the class of

4The model showing the attributes of the COUNTRY concept in the countries application is given in
the appendix. We will be using this model in examples throughout the paper
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information - the population and national product of all European countries was frequently

queried and thus useful to materialize. We materialize this data and de�ne it as an

additional information source as shown in Figure 1.1 (b). Given a query the mediator

prefers to use the materialized data instead of the original Web source(s) to answer the

query.

1.1.2 Selecting Data to Materialize

We are now left with the question of identifying what is the portion of data that is most

useful to materialize. There are several factors that can be analyzed or must be considered

for identifying such data. The classes of data that are most frequently queried by users

are obviously good candidates for materializing locally. One of the factors we can analyze

thus is the distribution of previous user queries to the mediator to determine the frequently

accessed classes of data. Another factor that must be taken into account is the structure

of Web sources being integrated. We provide database like query access to Web sources

that were not originally designed for structured querying by building wrappers around

the sources. As a result certain kinds of queries can be very expensive to execute. For

instance consider a query to the CuisineNet Web source where we ask for \the names

and telephone numbers of all chinese restaurants with a service rating of 9 or above." The

source is structured such that the only way to answer the query is to retrieve pages of all

chinese restaurants in CuisineNet to determine which ones have a service rating of 9 or

above and this obviously takes a long time. In many cases we can prefetch and materialize

data that will help improve the response time of expensive queries. For instance in the

above example we could locally materialize the names and service ratings of all restaurants

in CuisineNet and thus determine the ones satisfying a certain rating by looking at just the

local data i.e., without having to scan pages of all chinese restaurants. Finally we have to

take into account the fact that the sources can get updated. As the user must be provided

with consistent data, we must also incorporate the cost of keeping the materialized data

up to date when selecting classes to materialize.

To summarize the above, the following are the factors we consider for selecting data

to materialize:

� The distribution of user queries

� Structure of sources

� Updates at Web sources
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We now elaborate a little on how we analyze these factors.

1.1.2.1 Analyzing the Distribution of User Queries

We analyze the distribution of user queries to determine the most frequently accessed

classes of data. We look for \patterns" in query distributions. A pattern may be a

set of frequently queried attributes in a class. For instance in the country class it

may be that the set of attributes area, population, national product is very frequently

queried. A pattern may also be a set or subset of objects (tuples) in a class that are

frequently queried. For instance in the country class it may be that Asian countries are

queried most frequently. The above correspond to vertical and horizontal partitions of the

data respectively. Finally we may have associations between classes and attributes. For

instance a patterns such as the area, population of European countries that is queried very

frequently.

We have developed an algorithm for extracting such patterns from a user query dis-

tribution. A key feature of this algorithm is that it outputs a compact description of the

patterns extracted. A compact description is necessary from a performance perspective

and we shall elaborate on this in Chapter 3. The algorithm �rst classi�es queries by ana-

lyzing constraints in the queries to determine what classes of data the user is interested in.

We construct an ontology of such classes that users are interested in. For instance users

may be interested in European Countries or Democratic Countries, etc. For each such

class we then determine what groups of attributes are frequently queried. For instance

for European Countries, users may be primarily interested in say the economy and na-

tional product. We try to merge together attribute groups queried with approximately the

same frequency to make the description more compact. Finally we can further make the

description more compact by merging classes based on class covering relationships. The

algorithm thus tries to compactly describe classes of data that are present as patterns in

a query distribution. For instance the algorithm may extract patterns such as users are

interested in \the national product and economy of all European countries".

1.1.2.2 Analyzing the Structure of Sources

In Web-based mediators we provide database like query access to semistructured Web

sources by building wrappers around the sources. Often the Web sources have limited

querying capabilities. As a result, certain kinds of queries can be very expensive as the

query functionality not provided by the source is provided by the wrapper or the mediator.
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For each Web source being integrated we can determine in advance what are the expensive

classes of queries that could be asked in the application. We can then materialize data

that could improve the response time for the expensive kinds of queries.

In our approach, we start with a speci�cation of the query interface to a mediator

application that de�nes exactly the kinds of queries a user could ever ask in that mediator

application. We then estimate the costs of the various classes of queries using a cost

estimator which is part of the mediator. The purpose is to identify in advance the expensive

kinds of queries that could be asked in a particular mediator application. Then, using

heuristics based on the kind of query, source or sources used to answer the query and

also the di�erent data processing operations that are performed to answer the query, we

prefetch and materialize data that can improve the response time for the expensive query.

For instance consider a mediator application that includes amongst other sources an

online geocoder that accepts street addresses of places and returns the latitude and longi-

tude of the place. Now geocoding (converting street addresses to latitudes and longitudes)

a set of addresses using this source is an expensive query since the source is structured

such that we can only geocode one address at a time. Further the mediator application

might be such that we only geocode a �xed set of places every time (for instance the set

of restaurants in LA). In such a case we should materialize the result of geocoding this set

of places even before analyzing any set of user queries to the mediator.

1.1.2.3 Updates and Maintenance Cost

Finally we must address the issue of updates at Web sources. First the materialized data

must be kept consistent with that in the Web sources. It may be that the user is willing

to accept data that is not the most recent in exchange for a fast response to his query

(using data that is materialized). Thus we need to determine the frequency with which

each class of data materialized needs to be refreshed from the original sources. Next

the total maintenance cost (the maintenance cost for a class of data is the time spent

by the mediator in refreshing the materialized class each day) for all the classes of data

materialized must be kept within a limit that can be handled by the system.

We have developed a language for describing the update characteristics and frequency

of updates for various source classes and attributes and also the user's requirements for

freshness of each domain class and attribute. We illustrate the kinds of characteristics

we can specify using an example. Consider an information source for movies which we

model as a source relation movie src having attributes such as theatre, showtimes, actors,
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director, review, etc. Table 1.1 shows the update speci�cation for the movies relation and

some attributes, the speci�cation is implemented as a database relation.

CLASS MEMBERSHIP CHANGE TIME PERIOD TIME
MOVIE SRC A Y 1 week week:friday

Table 1.1: Characteristics of updates for a source class

It states that for the movie src source class, the membership= `A' i.e., arbitrary

(instances of the class can be added or deleted), change = `Y' i.e., yes (values of objects

or class members can change), time period is 1 week so the data changes once every week

and the time of change is every friday. The attributes change, time period and time

also characterize each attribute of a source class. By default for each attribute in a source

class the values of the update characterization attributes are propagated from the source

relation they are part of. So for instance the attribute `theatre' has the characteristics

change= `Y', time period= 1 week, etc. These defaults can be overridden by explicitly

stating the new values. So for instance we could specify the characteristics for the `actors'

attribute as shown in Table 1.2 since the value of actors for movie src does not change.

ATTRIBUTE CHANGE TIME PERIOD TIME
actors N - -

Table 1.2: Characteristics of updates for an attribute

For each domain class we also specify for each attribute the user's requirements for

currency of data, actually stated in terms of how stale he can tolerate the data to be.

Consider a domain class called movie where we integrate information from several sources

about movies.

ATTRIBUTE TOLERANCE
theatre 0
showtimes 0
actors 0
director 0
review 6 weeks

Table 1.3: Staleness tolerances for attributes of a domain class

Table 1.3 shows the user's tolerance for various attributes of the domain class movie.

It states that the value of attributes such as `theatre' and `showtimes' must be current

(having a tolerance of 0) whereas the `review' can be up to 6 weeks old.

We have developed an algorithm that using the above speci�cations can determine

the frequency with which attributes in each materialized class must be updated to be
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consistent with the user's requirements. It also computes the maintenance cost for that

class. The maintenance cost is considered in two ways. First, for each individual class if

the maintenance cost is very high we may decide not to materialize it. For instance a class

having a stock quote as one of its attributes which is updated every 5 seconds has a very

high maintenance cost and it may be better not to materialize such a class at all. Second,

the total maintenance cost for all the classes of materialized data should be kept within a

limit that can be handled by the system.

1.1.2.4 Admission and Replacement

Any materialized class occupies some local space and has an associated maintenance cost.

For any mediator application, we assume that we will have a limited total space for storing

the materialized classes of data and also a limited total maintenance cost that can be

borne for keeping the materialized classes up to date. It may be that we have several

classes of data that we want to materialize (based on query distribution analysis and

source structure analysis) but we do not have the space or cannot bear the maintenance

cost for all the classes. We have developed a method for quantitatively ranking proposed

materialized classes. We assign a pro�t to each class by considering factors such as expected

query response \savings" due to each materialized class, space occupied by each class,

maintenance cost, etc. This is discussed in detail in Chapter 6.

Also for each application, the set of classes that are optimal to materialize can change

over time. In particular, the classes of data queried most frequently can change over

time. For instance in TheaterLoc the set of movies users query most frequently or even

the set of restaurants queried most frequently will change over time. As patterns change

we periodically re-evaluate the query distribution to determine the frequently accessed

classes in the most recent query distribution. We have also developed an admission and

replacement policy where new classes of data may be materialized locally and existing

classes thrown out depending on the relative bene�ts of the classes.

1.1.2.5 An Integrated Materialization System

Based on the above ideas we have developed an \integrated materialization system" for

optimizing mediator performance. We de�ne this integrated materialization system to be

the complete software system which performs all the tasks for optimizing mediator per-

formance by data materialization. It includes subsystems for selecting data to materialize

based on query distribution analysis, source structure analysis and update aspects, a local
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database system for storing the materialized data, and a subsystem for keeping the ma-

terialized data consistent. The materialization system should be viewed as a stand alone

\plug-in" to a mediator that can interact with the mediator and optimize its performance.

There are several issues that we had to address in putting together the above ideas to

form a complete materialization system. One of the issues is in what order (if any) should

the various factors be analyzed ? The maintenance cost must always be taken into account

for any class of data materialized. In fact the maintenance the cost for a particular data

item may be very high and thus we may decide not to materialize any class containing

that data item. Thus the update costs should be analyzed before the source structure

or query distribution. Based on source structure analysis and with estimates of update

costs we may decide to materialize a particular class even before looking at the user query

distribution. Thus source structure should be analyzed before the query distribution.

We have developed a systematic framework that de�nes exactly how various factors are

analyzed, how they a�ect one another and how various factors are combined to determine

what classes of data are to be materialized. Another issue is that the materialization

system must periodically refresh the materialized classes at appropriate time intervals.

The refreshing frequency is determined by analyzing the update characteristics and user

requirements. Finally the materialization system needs to make changes to the domain and

source models of a mediator application to register the changes due to the new materialized

classes de�ned as auxiliary information sources.

1.1.3 Contributions

The major contributions of this thesis can be summarized as follows:

� I have presented a framework for materializing data in mediators by de�ning the

materialized data as another information source.

� Arguing that data must be materialized selectively, I have presented an approach for

automatically identifying data to materialize based on considering several factors.

� I developed an algorithm for extracting patterns from a distribution of user queries

which compactly describes frequently queried classes of data.

� I developed an approach for systematically analyzing the structure of Web sources

to predetermine expensive queries with heuristics to prefetch data that can improve

response time for the expensive queries.
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� I developed an approach for specifying update characteristics of Web sources with

user requirements for freshness. I estimate the maintenance cost for each materialized

class of data from the update speci�cations and incorporate it into the decision of

selecting data to materialize.

� Finally, I put together the above ideas to develop a complete materialization system

that can augment a mediator to optimize its performance.

1.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2, I provide a high level

overview of the design of the materialization system. In Chapter 3, I describe how we

extract patterns from a distribution of user queries. In Chapter 4, I describe my approach

for analyzing the structure of sources for prefetching data. In Chapter 5 I describe update

aspects. I present a speci�cation language for update characteristics and user requirements

for freshness of data. I also describe an algorithm for estimating maintenance cost. In

Chapter 6, I describe how all the above factors are pieced together to form the complete

materialization system. I present integration issues, the admission and replacement policy

for materialized data classes and the details of the interaction of the materialization system

with the mediator. In Chapter 7, I present experimental results for the materialization

system that I implemented for the Ariadne information mediator. I tested the system in 3

di�erent mediator applications that we have developed for Ariadne recently. In Chapter 8

I discuss related work especially in the materialization and caching areas in the database,

operating systems and Web server domains. I also provide a detailed discussion on the

generality of the materialization approach with regards to applying it to several other

mediator systems. Finally in Chapter 9, I discuss directions for future work and provide

a conclusion.
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Chapter 2

Materialization System Overview

We provide a high level overview of the materialization system. We will be presenting a

modular architecture for the system with di�erent tasks such as query distribution analysis,

source structure analysis, update analysis etc. allocated to individual modules.

2.1 A Modular Architecture of the Materialization System

To review the de�nition of the materialization system provided in the introduction, it is the

complete software system doing the tasks of query distribution analysis, source structure

analysis, update aspects, combining all the above factors for selecting data to materialize

and including a local database system for �nally storing the materialized data.

We have designed the materialization system as having a modular architecture with

separate modules for performing the various tasks of query distribution analysis, source

structure analysis, etc. as illustrated in Figure 2.1. The primary reasons for this architec-

ture have mostly to do with the advantages of a modular architecture over a monolithic

architecture for any large software system in general. The various tasks of the materializa-

tion system are distinct and clearly separable. A modular architecture provides a means

for assigning separate tasks to separate modules. This provides a more understandable

conceptual view of the system and makes maintenance or enhancements to various parts

easier.

We have 5 di�erent modules in the system, namely:

(i) Query Distribution Analysis (extracting patterns from queries)

(ii) Source Structure Analysis

(iii) Update Analysis

(iv) Admission and Replacement

(v) Materialization
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We now describe briey what task each module performs. We also describe the input to and

output from each module and also the data ow between these modules. We will proceed

in the order in which the modules perform their tasks once the materialization system

starts to optimize a new mediator application. (i) Update Module: The primary task of

this module is to compute the frequency of update and maintenance cost for any class of

materialized data given the update speci�cations. For optimizing any new application, �rst

the update module uses the update speci�cations to determine what classes of data need

to updated very frequently if materialized. This is so that we can remove such classes from

consideration for materialization. For classes of data that we do consider materializing,

the maintenance cost for each materialized class must also be estimated to compute the

pro�t for that class. At a later stage thus the update module also provides estimates of

the maintenance cost for any class. To summarize:

Inputs: Update speci�cations, Classes proposed for materialization

Outputs: Classes that must not be considered for materialization because of very high

update frequency, Maintenance cost estimate for each proposed materialized class.

(ii) Source Structure Analysis: We then proceed to the source structure analysis mod-

ule.Its task is to identify expensive kinds of queries and then using knowledge of the

structure of Web sources to identify data that if prefetched and materialized will speed up

the response time of these queries. It uses the mediator GUI speci�cation to determine

what queries can be asked in a particular mediator application. It uses estimates from the

query cost estimator in the mediator to determine which of these queries can be expensive.

Finally it uses query processing axioms to identify data that if materialized will improve

response time for these expensive queries. The axioms are precompiled axioms that tell

how data for a particular domain class is obtained by a source or combination of sources.

The axioms essentially encode what data processing operations (select, join etc.) will be

performed across sources and also what query processing limitations are present in sources

(e.g., binding patterns). To summarize:

Inputs: Set of classes, GUI speci�cation, Query cost estimates, Query processing axioms.

Output: Set of classes proposed for materialization.

(iii) Query Distribution Analysis Module: We then move on to the query distribution

analysis module. The task this module performs is to extract patterns of frequently ac-

cessed classes from a user query distribution. To summarize:

Input: Set of classes, User query distribution

Output: Set of classes (proposed for materialization) that are frequently accessed classes

in the query distribution.
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(iv) Admission and Replacement Module: As mentioned in the Introduction chapter,

our approach is to materialize data selectively. Both the source structure and query dis-

tribution analysis modules propose classes of data to materialize. However it may not

be possible to materialize all these classes because of limitations of space or resources for

keeping the materialized data up to date at the mediator side. The task of the admission

and replacement module is to optimally select classes of data to materialize (from classes

of data proposed for materialization by source structure analysis and query distribution

analysis) given constraints of space and maintenance cost at the mediator side. It also

makes decisions regarding replacement of materialized classes. It is likely that for any

mediator application the patterns in the query distribution may change with time. In

this case newer classes of data are queried more frequently and the materialization system

must materialize these new classes and throw out existing materialized classes that are not

queried frequently any more. To summarize:

Inputs: Classes of data proposed for materialization, Estimates of maintenance cost, Space

occupied by each class, System constraints of space and maintenance cost.

Output: Classes of data that will be materialized.

(v) Materialization Module: This should be viewed as the `main' materialization mod-

ule. It uses the services of the other modules and interfaces to the local database for per-

forming the overall materialization task. The admission and replacement module hands

it a set of classes that must be materialized. It then retrieves the data for these classes

and materializes it in the local database. It also interfaces to the mediator application so

that the mediator application can use the materialized data. Finally it also refreshes the

materialized classes of data at appropriate intervals.

The above has just been a brief summary of the tasks of each of the modules. In the

subsequent chapters we describe in detail how exactly each module performs its assigned

task. We now describe some more high level issues regarding the interaction between the

various modules.

2.2 Interaction Between Modules

Although the tasks of various modules are clearly de�ned and separable, there is of course

interaction between the modules to perform the overall materialization task. We discuss

the important issues regarding interaction between di�erent modules, namely order of

analysis by the modules and the details of the data ow between modules.
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2.2.1 Order of Analysis by Various Modules

One of the issues is to determine in what order (if any) must the various factors be

analyzed. There may be some class(es) or attribute(s) that we decide not to materialize

just based on the fact that the update frequency is extremely high. For instance we

decide not to materialize a stock quote that is updated every 5 seconds. Assuming that

the user's tolerance for staleness is 0 (as it quite likely will be for such data), any stock

quote(s) materialized will have to be updated every 5 seconds which will be quite expensive.

Obviously then we would want to determine the update frequencies for various attributes

before either prefetching them based on source structure analysis or materializing them if

they happen to be extracted amongst frequently queried classes. We must also do structure

analysis before analyzing the query distribution. This is because we may choose to consider

some classes for materializing just by analyzing the structure of sources. In that case we

do not need to look for patterns for those classes in the distribution of queries.

2.2.2 Data Flow Between Modules

We now discuss more speci�cally the data ow between the various modules in the perfor-

mance optimization system. We record information about each attribute in a domain class

as we go through the various modules. At any step each domain attribute is annotated as

one of `N',`M',`D'. 'N' means that we have decided not to materialize that attribute. `M'

means that we have decided to materialize the attribute. `D' means that we have not yet

decided whether or not to materialize it, we are waiting to analyze other factors before

reaching a decision. Initially all domain class attributes are annotated as `D'. We initially

analyze the update speci�cations using the update module to determine what attributes

would be updated very frequently. If the update frequency for any attribute is above a

certain preset threshold value, we annotate the attribute as `N'. We then move on to the

source structure analysis module. We use the precompiled axioms and the cost estimator

to propose classes for prefetching and materializing. Of course none of the attributes in

these classes must have been annotated as `N' previously. The attributes of the classes

we propose to prefetch are annotated as `M'. We then use the query distribution module

to extract patterns from the remaining classes i.e., those with attributes still annotated

as `D'. Finally we move on to the admission and replacement module. It takes as input

proposed classes to materialize output by both the source structure and query distribution
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analysis modules, estimates of maintenance cost from the update module and also spec-

i�cations of local space and maintenance cost constraints. It then selects classes of data

that must �nally be materialized by analyzing the costs and bene�ts of each class.

2.3 Summary

After introducing the issue of speed in mediator applications and outlining our approach

to addressing this issue based on local materialization in the previous chapter, we have

now given a high level overview of the materialization system. We presented a modular

architecture for the overall materialization system. We described briey the tasks of various

modules and also the data ow and interaction between modules. In the following chapters

we will describe in detail how each of the modules performs its assigned task.
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Chapter 3

Extracting Patterns from Queries

One of the hypotheses of my approach is that there will be patterns present in user queries

i.e., some classes of data will be queried more frequently than others. Such frequently

queried classes of data are of course useful to materialize locally. In this chapter we

review the notion of patterns described in the introduction chapter. We then describe

how we extract such patterns from user queries. We present an algorithm for extracting

patterns from a distribution of user queries along with experimental results demonstrating

its e�ectiveness. We also present a complexity analysis and description of language of

patterns learned by the algorithm.

3.1 Patterns and Materialization

As described earlier, a pattern is essentially a class of data that is frequently queried. For

instance in TheaterLoc an example of a pattern is \the address and telephone number of all

Mexican restaurants." This leads us to the problem of how we extract such patterns from

user queries. We now present an algorithm that we have developed, called the CM (cluster

and merge) algorithm for extracting such patterns from a distribution of user queries.

A key feature of this algorithm is that it outputs a compact description of the patterns

extracted. A compact description of frequently accessed classes is necessary from a per-

formance point of view. For each class of data we materialize we de�ne a new information

source for the mediator. The general problem of query planning to gather information

from many sources is combinatorially hard and having a large number of sources will cre-

ate performance problems for the query planner. With a compact description we keep the

number of patterns extracted and thus the number of new information sources created

small.
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Figure 3.1: Compact Description of Patterns

For instance consider the patterns illustrated graphically in Figure 3.1. The X-axis

represents various attributes and the Y-axis represent subclasses. Assume the four sub-

classes shown on the Y-axis in Figure 3.1 (a) (i.e., French, Italian, Chinese and Mexican

restaurants) form a covering of the class `Restaurant'. The rectangular boxes represent

patterns i.e., the class or subclass and the attributes in the pattern. In 3.1 (a) we see 9

di�erent patterns. From a materialization perspective, materializing classes corresponding

to these patterns implies creating 9 new information sources in the mediator application.

However the single pattern shown in 3.1 (b) represents approximately the same data. In

fact it contains all the 9 patterns in 3.1 (a) and some extra data. Materializing the class

corresponding to this pattern implies creating just a single new information source.

The CM algorithm is designed such that it extracts compact patterns as illustrated

above. It analyzes queries in a distribution one at a time. It determines what classes or

subclasses of data users are most interested in by analyzing constraints in the queries. It

also determines what attributes or groups of attributes users query most for each class or

subclass. Finally it also attempts to merge together several classes of data to make the

description more compact. We now describe this algorithm in complete detail.

3.2 The CM Algorithm for Extracting Patterns

The CM algorithm takes as input a distribution of user queries and outputs a compact

description of patterns that extracts from the query distribution.

3.2.1 CM Algorithm

The pseudo code for the CM() algorithm is given in Figure 3.2. There are three main steps

in the algorithm:
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� Classifying queries (classify queries()). This is to determine what classes of data

the user is interested in.

� Clustering attribute groups

(cluster attribute groups()). To determine attribute groups of interest for each

class.

� Merging classes (merge classes()). This is to try and merge classes of data to

make the description more compact.

We now describe the steps in the algorithm in more detail.

3.2.1.1 Classifying Queries

We �rst analyze queries to determine what classes of information users are interested in

(procedure classify queries() ). For instance queries of the form:

SELECT A

FROM country

WHERE region= \Europe"

indicate that the user is interested in the class of European countries. We maintain an

ontology in loom of classes of information that are queried by users. Initially the ontology

contains only the classes in the domain model. We then add sub-classes of these existing

classes to the ontology, the sub-classes are generated by analyzing constraints in the user

queries. Assuming an SQL syntax for the queries, a query to a domain class has the fol-

lowing general form:

SELECT A

FROM S

WHERE P

where A is the set of attributes queried for the domain class S and P = P1 and P2 and

... Pn are predicates specifying the query constraints (we restrict ourselves to conjunctive

queries). We denote as SP the \query sub-class" which is the sub-class of S satisfying P.

We denote as fSP 1; SP2; :::; SPn g the set of \sub-classes of interest" where the Pi s are

the individual predicates comprising P and SP i is the sub-class of S satisfying Pi. For
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CM (QS) f /* QS is set of user queries */
O=CLASSIFY QUERIES(QS) /* build ontology O of classes

of interest */
CLUSTER ATTRIBUTE GROUPS(O) /* cluster attribute

groups in each class */
FOR (all coverings (S;C) in O) f /* S is the superclass and C set of subclasses in covering */

MERGE CLASSES(S;C) /* merge classes */
g

g

CLASSIFY QUERIES(QS)
WHILE ( more queries(QS)) f

Q = get next query(QS)
SP = get query subclass(Q) /* returns subclass of S satisfying P (predicate set) */
f SP i g = get interest subclasses(Q) /* returns subclasses of S based on individual predicates Pi */
update ontology(SP ) /* add any new subclasses appropriately */
IF P = ; f /* P is the predicate set in the WHERE clause */
update attribute count(S,A)
g ELSE f
n=count(f SP i g)
FOR i = 1 to n DO update attribute count( SP i; A ) /* A is the attribute set in SELECT clause */
g

CLUSTER ATTRIBUTE GROUPS(O) f
/* cluster attribute groups for each class in O with similar frequency
and similar attribute groups */
g

MERGE CLASSES(S;C)
i=1
n=number of elements(C) /* size of set C */
totalsize = 0 /* space occupied by matching groups */
seed = get seed(Ci) /* pick an attribute group from Ci */
WHILE (seed 6= ; ) f

seedsize=get size(seed) /* space occupied by seed */
totalseedsize= seedsize*n /* space occupied by (S,seed) */
FOR i = 1 to n DO f
temp = �nd match(seed, Ci) /* �nd best matching group for

seed in Ci */
size = get size(temp)
totalsize += size /* total size of matching groups */

g
IF (totalsize/totalseedsize) � MERGETHRESHOLD f

/* merging criteria satis�ed */
remove(seed,C) /* remove attributes in seed from all classes */
add group(S,seed) /* form group in superclass */
g
ELSE f
mark down(seed,Ci) /* so that the same seed is not chosen again */

g
i= (i+1)mod(n) /* chose next class in C cyclically */
seed = get seed(Ci) /* get seed from next class */
g

Figure 3.2: The cm algorithm for extracting patterns in queries
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instance consider a query such as:

SELECT population; area

FROM country

WHERE (region = \Europe") AND (government = \Republic");

In the above query the query sub-class is that of European Republic Countries and

the sub-classes of interest are European Country and Republic Country. In the clas-

sify queries() procedure for each query we �rst determine the query sub-classes and set

of sub-classes of interest and insert them into the ontology if they are not already present.

For instance for a set of queries on the concept country in which the where clauses

have constraints on the attributes region (bound to a value such as Europe, Asia etc.) or

government (bound to a value such as Republic, Monarchy, Communist etc.) or both, we

would create an ontology such as shown in Figure 3.3.(The arcs in the �gure represent

coverings of groups of subclasses for the superclass country).

COUNTRY

REPUBLIC−COUNTRY

EUROPEAN−REPUBLIC−COUNTRY

COMMUNIST−COUNTRYASIAN−COUNTRY

EUROPEAN−COUNTRY
AUSTRALIAN−COUNTRY

Figure 3.3: Ontology of subclasses of COUNTRY

We also update the query count for the query sub-class SP for the attribute group A.

This is to maintain a record for each sub-class of what attribute groups have been queried

and how many times.
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3.2.1.2 Clustering Attribute Groups

After the step of classifying queries we have an ontology of classes of interest and also

for each class what attribute groups have been queried and with what frequency. We

attempt to merge together attribute groups with similar frequencies and with similar

attribute groups in order to reduce the number of groups for each class that we have

to consider. Attribute groups are considered `similar' if they have mostly overlapping

sets of attributes. The similarity measure is based on the fraction of attributes that

are common to both attribute groups. Merging attribute groups makes the description

of classes more compact. The problem of merging together attribute groups based on

similarities of two factors, namely the similarity of the attribute groups and the similarity

of query frequency can be formulated as a two dimensional clustering problem. It is known

that the problem of �nding an optimal clustering is NP complete [S.J.Wan et al., June 1988,

Hya�l and R.L.Rivest, May 1976]. We have developed an approximation algorithm for this

purpose. Attribute groups are merged together if the relative di�erence of their frequencies

is within a preset limit known as cluster-frequency-difference and the similarity of

attribute groups is at least group-similarity-threshold. This is done in the procedure

cluster attribute groups().

We provide an illustration below. Table 3.1 shows the attribute groups for some class

along with the query frequencies for the attribute groups. Table 3.2 shows the results after

merging the attribute groups based on similarity of attribute group and query frequency.

This results in a more compact description with fewer classes.

attribute groups frequency
farea,gdp,economy g 9
fcoastline,ports g 2
farea,economy,percapita g 11
fgdp,economy,forests g 4
fcoastline,ports,airports g 3
fcoastline,ports,railways g 2

Table 3.1: Attribute groups

attribute groups frequency
farea,gdp,economy,percapita g 10
fcoastline,ports,airports,railways g 2.3
fgdp,economy,forests g 4

Table 3.2: Merged attribute groups
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3.2.1.3 Merging Classes

We mentioned earlier that it is important to keep the number of classes of information

materialized small from a query processing perspective. Consider the following classes of

information, each of which is essentially a group of attributes in a class:

(i) (european-country,fpopulation,areag)

(ii) (asian-country, fpopulation,areag)

(iii) (african-country,fpopulation,areag)

(iv) (n.american-country,fpopulation,areag)

(v) (s.american-country, fpopulation,areag) and

(vi) (australian-country,fpopulation,areag).

We could replace the above six classes by just one class (country,fpopulation,areag)

which represents exactly the same data. In general thus a group of classes of informa-

tion of the form (C1; A); (C2; A); ::::; (Cn; A) 1 may be replaced by one class i.e., (S;A) if

C1; C2; ::; Cnare direct subclasses of S and form a covering of S. As the ontology of classes

is maintained in loom, we use loom to determine groups of classes we can merge based

on class/subclass relationships.

In fact we also allow for a kind of `relaxed' merge where we may merge a set of classes

such as (C1; A1); :::; (Cn; An) to (S;A) where the Cis are direct subclasses of S as above.

However A1; :::; An need not be exactly equal groups rather they just need to overlap, and

A is the union of A1; :::; An. The disadvantage in this case is that the merged class of

information will contain some extra data i.e., data not present in any of the classes of

information merged to form the merged class. There is a tradeo� between space wasted

to store the extra data and the time gained (in query planning) in reducing the number

of classes materialized. The amount of space that can be wasted by extra data is limited

by a parameter known as the merge-threshold.

The procedure merge classes() shows how we do exact or relaxed merging of classes.

The procedure takes as input a superclass S and a set of subclasses C of S that form a

covering of S. For each class in C we also have the set of groups of attributes queried.

The basic idea is to take an attribute group A in a class Ci in C and see if we can merge

with other groups in other classes in C to the group A in the superclass S. We describe

the steps in the procedure merge classes() by stepping through the procedure with an

example as shown in Tables 3.3 and 3.4 . The �rst column shows the the various classes in

C along with their attribute groups. The asterisk(*) next to the fimports,exportsg group

1
Cis are classes and A is an attribute group
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of the �rst class i.e., european{country indicates that we will choose that group as a

seed for merging with other classes. This seed group is chosen randomly. The next step is

to �nd matching groups for the seed in all other classes. This is done by the �nd match()

procedure which given a seed and a class returns the largest subset of attributes of the

seed that it can �nd in any group in the class. The results of �nd match() for each of

the classes in C are shown in the third column. The next step is to �nd the ratio of the

space occupied by the matching groups in the classes of C to the space needed to store the

group A for the superclass S. The ratio should be higher than the merge-threshold to

allow merging the matching clusters to the cluster A in S . Intuitively this is to ensure

that the attributes in A occur su�ciently through the classes in C to justify merging the

matching groups to the group A in S. In this example totalsize i.e., the space occupied by

the matching groups is (2+2+1+0+2+2) = 9 units. The totalseedsize i.e., the space that

should be occupied in case of an exact merge is 2*6= 12. Thus the ratio is 9/12=0.75 and

we do merge to the group fimports,exportsg for the superclass country (assume that

merge-threshold is 0.7). Table 2.2 shows the same set of classes after the merging step

when the attributes in A= fimports,exportsg have been removed from the classes in C.

In case we do not merge the groups we do not remove the attributes from the classes.

However we mark the seed group as `down' so that it is not picked again as a seed. We

then pick a seed from the next class asian{country and repeat the above procedure.

set of subclasses C with attribute groups matching groups size
(european-country,f*imports,exportsg,farea,gdp,economy g) fimports,exportsg 2
(asian-country,fimports,exports,climateg,fdebt,economy g) fimports,exportsg 2
(african-country,fimportsg,fpopulation, languages g) fimportsg 1
(n.american-country,fclimate,terraing,fgovernment g,fliteracy
g)

fg 0

(s.american-country,farea, coastlineg,fimports,exportsg fimports,exportsg 2
(australian-country,fimports,exports,debtg,fgdp,defenseg) fimports,exportsg 2

Table 3.3: Merging across classes

set of subclasses C with attribute groups
(european-country,farea,gdp,economy g)
(asian-country,f*climateg,fdebt,economy g)
(african-country,fpopulation, languages g)
(n.american-country,fclimate,terraing,fgovernment g,fliteracy g)
(s.american-country,farea, coastlineg
(australian-country,fdebtg,fgdp,defenseg)

Table 3.4: Classes after one merging step
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The main motivation behind the steps of merging attribute groups for a single class

and also merging classes based on class/subclass relationships is to keep the description of

the classes of data extracted as patterns compact. Finally we also keep count of how many

queries each class of data supports i.e., how many queries can be answered using that class.

From this we can calculate the ratio of supported queries by each class to the total number

of queries in the distribution. A class is �nally output as a pattern by the CM algorithm

only if this ratio is greater than a threshold known as the query ratio threshold (q). The

query ratio threshold for a class is de�ned as the ratio of the number of queries that can

be answered using this class to the total number of queries in the query distribution.

3.2.2 Language Learned by CM

We present a brief discussion on the language describing the patterns learned by CM. In

CM we analyze the queries that are asked of each individual domain concept. To review

what we described above, for each domain concept we may further create subclasses (in

the ontology of classes of interest) based on constraints in the query. The subclasses are

created based on either equality constraints or numeric constraints. We further merge

attribute groups in each class and also merge across class coverings. It is easy to see that

CM extracts patterns of the form:

SELECT A1; A2; :::An

FROM C

where Ais are attributes and C is either a domain concept or some subclass of a do-

main concept (say) where C is the subclass of D such that D satis�es the constraint P.

P is a conjunction of predicates that may be equality predicates (numeric or string) or a

numeric range predicate.

We could extend CM further to learn more general descriptions than at present. For

instance one extension would to be able to have more types of constraints in the queries

(and the language learned) such as including negation constraints. Also CM currently

analyzes queries on single domain classes (or individual subclasses of domain classes). In

case of having a large number of join queries across various domain classes it would be

interesting to extract patterns that were joins across 2 or more classes (if present in the

distribution). One interesting extension to CM would be to also analyze join queries in

the distribution and extract join patterns by generalizing the join queries present.
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3.3 Evaluating the CM Algorithm

We set up an experiment to evaluate the e�ectiveness of the CM algorithm in extracting

patterns from a query distribution. The experiment is based on standard precision and

recall measurements for evaluating information retrieval systems. This is because we are

trying to estimate how e�ective CM is in extracting patterns that are present and also to

what extent it extracts extraneous data as patterns.

We �rst de�ned a schema for an imaginary mediator application against which we can

pose queries. The schema consists of a class S with 50 attributes A1,A2,...,A50. The class

S is further partitioned into 5 disjoint subclasses S1,S2,S3,S4 and S5. Each subclass has

10 instances, S1 has instances E1,E2,..,E10, S2 has instances E11,...,E20 etc. We then

de�ned a \pattern" P which is the class S3 with attributes A25,...A30. We then generated

di�erent query distributions against this schema varying the percentage of queries that

fall within the pattern. We input each distribution to the CM algorithm to see what

patterns it would extract from the distribution. We use standard precision and recall

measurements from information retrieval to measure the e�ectiveness of CM in extracting

the prede�ned pattern P. In information retrieval (IR) we specify some criteria for the

data we wish to retrieve. For instance we may specify some key words for retrieving text

�les that contain those keywords (from a large collection of text �les). The precision is

the percentage of data retrieved that is relevant. Data is said to be relevant if it satis�es

the search criteria. In this example �les that have the keywords speci�ed are said to be

relevant and the precision is the percentage of relevant data �les in the data �les returned

by the IR system in response to the search. The recall is the percentage of relevant data

retrieved. In this example it is the percentage of the relevant �les that were returned by

the IR system in response to the search. A good IR system must have both high precision

(high precision implies that most of the data retrieved is relevant) and high recall (high

recall implies that most of the data that is relevant to our search is indeed returned). In

our experiment the prede�ned pattern P is the relevant data, while for each time we run

the CM algorithm over a query distribution the patterns extracted from the distribution

is the data retrieved. It is obvious that we would want a high precision and recall in

our system as well. A high precision would imply that a high percentage of the patterns

extracted are indeed in the prede�ned pattern P and a high recall implies that a major

portion of the pattern P is identi�ed and extracted by CM. Finally since the query ratio

threshold (q) a�ects what patterns are ultimately output by the CM algorithm we present

precision and recall measures for varying threshold values.
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Figures 3.4(a) and (b) show the precision and recall values respectively against varying

percentages of queries that fall within the prede�ned pattern P in a query distribution.

For each we present precision and recall values for di�erent query ratio thresholds (q).

The CM algorithm does indeed prove to be e�cient in extracting the prede�ned pattern

P as the recall values are very high (100%) for most of the threshold range for moderate

or high percentages of queries in the pattern P. For extraneous data extracted along with

P we must analyze the precision values graph. For high threshold values(q=0.4 - 0.5) the

precision is very high when a high percentage of queries are in P (> 50%) but very low for

lower percentages. This is because even if queries in the pattern P are present, they need

to be in a very high proportion for the CM algorithm to extract them at all. For lower

threshold (q= 0 - 0.1) the precision is quite low even when a high percentage of queries is

in P. This is because of a low threshold the CM algorithm extracts a lot of random classes

as patterns in addition to the pattern P. It is best to keep the threshold at an intermediate

value (0.2 -0.3) where the precision is high for moderate or high percentage of queries in

P. The recall remains quite high (100%) for most of the threshold range for moderate or

high percentages of queries in the pattern P.
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Figure 3.4: E�ectiveness of CM Algorithm

3.4 Complexity

As CM has been designed to take as input a large number of previous user queries (a typ-

ical number might be say 1000 queries) for extracting patterns, the complexity of running

CM is also a matter of concern. We present below a complexity analysis of the algorithm

with some reasonable assumptions about the query distribution. For a particular domain
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class:

Number of queries = N

Number of attributes of domain class = M

Number of attributes on which constraints may be speci�ed = K

We analyze the complexity by analyzing each step of the CM algorithm:

(i) Creating the ontology of subclasses of interest. For each query

SELECT A1; A2; :::An

FROM C

WHERE P

Suppose P consists of a single predicate. In case of string equality constraints (of the

form Ai = V ) we form subclasses of P based on the value of Ai. We assume that the

number of such subclasses is a small constant t. The assumption is valid as we will not

form subclasses of C based on an attribute Ai that may be the primary key of C (thus

resulting in several subclasses). Also for numeric constraints, both equality and range we

partition into subclasses based on ranges for the value of Ai and we can assume that the

number of such subclasses is again a small constant t.

C (Domain Concept)

Depth 1

Depth 2

Depth n

Figure 3.5: Ontology of subclasses of interest

Since we can specify constraints on at most K attributes and the number of subclasses

for a single attribute value can be at most t, it is easy to see that in an ontology (see

�gure 3.5) the number of subclasses is at most (1 + t)K . This is because for each of the
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K attributes for which we can specify a constraint we may either not specify a constraint

or the constraint will be one of the t possible values for the attribute in case of string

constraints. In case of numeric constraints it will be in one of the t possible ranges.

However for N queries the number of subclasses that can be created will be much less

than what (1 + t)K could be. In the ontology at depth 1 we have at most tK subclasses.

Now for each query we will create subclasses at depth 1 in the ontology (unless they

already exist) and 1 subclass at depth n if the query constraint has n predicates and N �

1 . Thus for N queries the number of subclasses created can be at most (tk+N). For each

query we may create upto (nt + 1) new subclasses where n is the number of predicates

in the query constraint. This is because we could have up to nt new subclasses at depth

1 and 1 new subclass at depth n. For each of these new subclasses we need to ensure

that either the subclasses are already present in the ontology or place them at appropriate

places in the ontology. A linear search on the ontology is required which takes time at

most (Kt+1)(tK+N) for each query as at most K predicates can be present in the query

constraint. As the number of queries is N , the entire �rst step of creating the ontology

takes time N(Kt+ 1)(Kt+N) which is O(N2K2)

(ii) The second step is for each subclass, to cluster together the groups of attributes

based on similarity of cluster and similarity of frequency with which they have been queried.

As mentioned earlier we use an approximate 2D clustering algorithm and it has a running

time that is quadratic in the number of queries. Assuming an even distribution of the

N queries in the (tk + N) subclasses, we have on an average of N=(tk + N) queries

in each subclass. Also to measure 'similarity' of attribute clusters in each subclass, we

compare clusters pairwise and each comparison takes time at most M2 as M is the total

number of attributes for the domain concept. The clustering of attribute groups in each

subclass thus takes time = c M2(N=(tk+N))2 where c is a constant. As we have at most

(tK +N) subclasses the entire clustering step takes time = c (tK+N) M2(N=(tk +N))2

= c M2N2=(tK +N) which is O(M2N=K)

(iii) The �nal step is to cluster based on coverings. The number of coverings is obviously

less than (tK+N), the total number of subclasses in the ontology. Now when we consider

a covering we merge across at most t subclasses. This is because we merge across the

direct subclasses of a particular class and this can be at most t. Recall that we start

with a seed cluster and compare with other clusters to see if there is a good overlap.

Each comparison (of the seed cluster with another) takes time M2. Again assuming an

even distribution of queries among the subclasses in the ontology we have an average of

N=(tK +N) queries in any subclass. As there are at most t subclasses in a covering, the
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total number of attribute clusters is at most tN=(tK+N). If each cluster is compared with

every other cluster in the covering (in the course of searching for overlapping clusters),

the number of such comparisons is (tN=(tK + N))2. The actual number of comparisons

while searching for overlapping clusters to merge will be less than (tN=(tK +N))2 as we

will go on removing clusters on merging them. Merging across each covering thus takes

time at most M2(tn=(tK + N))2. As there are at most (tK + N) coverings, the entire

third step takes time M2(tN)2=(tK + N) which is O(M2N=K). As the 3 di�erent steps

have complexity O(N2K2); O(M2N=K) and O(M2N=K) respectively, the complexity for

the overall algorithm is O(N2K2 +M2N=K) . As K can range from 1 to M (number of

attributes in the domain concept) this can be further simpli�ed to O(M2N2).

O(M2N2) seems satisfactory as the complexity is polynomial in the number of at-

tributes in a domain concept and the number of queries analyzed. The time for running

CM will thus be acceptable even for large values of M and N . The purpose of analyzing

the complexity of CM was to ensure that there are no sources of complexity that would

make the running time of CM a matter of concern. For instance if it were say exponential

in the number of queries or attributes. However with reasonable assumptions about the

query distribution, we have shown that CM is a polynomial time algorithm and thus the

running time will not be an issue.

3.5 Summary

We described how the query distribution analysis module performs its task of extracting

patterns from user queries. Extracting patterns is important as we want to identify the

classes of data frequently queried by users and then materialize them. We presented

the CM algorithm that we have developed and use for extracting patterns in a compact

manner. We also presented experimental results demonstrating the e�ectiveness of this

algorithm in extracting patterns. Finally we described the language of patterns learned,

complexity of the CM algorithm and relationship of extracting patterns with extracting

association rules in data mining.
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Chapter 4

Source Structure Analysis

We provide database like access to semistructured Web sources through wrappers around

the Web sources. Certain kinds of queries to a wrapped Web source can be very expensive

as the wrapper might have to perform query processing functions not provided by the Web

source. In many cases the processing of such queries can be sped up considerably if some

of the data is materialized locally. We have developed an approach for source structure

analysis to determine in advance expensive queries to a source. We then prefetch and

materialize data that can improve the response time for such queries. Our approach to

prefetching data by source structure analysis is the focus of this chapter.

4.1 Introduction

The purpose of source structure analysis is to determine for each mediator application,

expensive classes of queries and then prefetch and materialize data that can improve the

response time for such expensive queries. Note that we cannot determine classes of data to

prefetch by just analyzing the query distribution as described in the previous chapter. By

query distribution analysis we determine frequently queried classes of data and materialize

them. The complete answer to many user queries is then contained in these materialized

classes. By doing source structure analysis we materialize data that is used to speed up the

processing of expensive classes of queries, as opposed to query distribution analysis where

the objective is to materialize data that contains complete answers to frequent queries.

Source structure analysis is comprised of the following steps.

� Identifying classes of queries that could be asked in a mediator application.

We �rst identify the kinds of queries that can ever be asked in a mediator application.

In most mediator applications the user can query the mediator only through a user
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interface. The interface is formally described using a GUI speci�cation. We use this

speci�cation to determine the kinds of queries that could be asked.

� Identifying expensive queries.

From the queries that could be asked in a mediator application, we then identify the

ones that may be expensive to answer. The cost estimation is done using a query

cost estimator in the mediator.

� Selecting the data to materialize

Finally we identify classes of data that can improve the response time for the expen-

sive queries. This is done using heuristics that are described more in detail later.

We now describe each of the above steps in more detail. First however we provide a

brief description of certain aspects of query processing techniques in the SIMS mediator.

Some of the information compiled for query processing can actually be used in determining

what queries would be asked and also what operations would be performed on data from

various sources to answer the queries. As we shall describe later, this information is useful

in identifying data that can be prefetched and materialized to speed up answering the

expensive queries.

4.1.1 Axioms for Query Processing

In the SIMS system the user poses queries to classes in the domain model and it is the task

of the mediator query processor to determine what source or combination of sources must

be used to get the answer. In previous work in SIMS [Arens et al., 1996] the selection of

sources was performed dynamically by searching the space of query reformulations given

the domain model and source descriptions. However the approach did not scale well to

large numbers of sources since the search space becomes quite large as the number of

sources increases. In our current approach we precompile [Ambite et al., 1998] the source

de�nitions into a set of domain axioms which compactly express the possible ways of

obtaining the data for each class in the domain model. These axioms can be e�ciently

instantiated at run time to determine the most appropriate rewriting to answer a query.

Such axioms are illustrated in 4.1. For instance the �rst axiom states that data for the

domain class country can be obtained from the single source Ciafactbook. Axiom 2 states

that data for the domain class restaurant can be obtained from either of the two sources,

Zagat or Fodors etc. As these axioms explicitly state what sources are needed to obtain

the data for a domain class and also what operations will be performed in the data, they
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1. country(name area coastline gnp population ...)� ciafactbook(name area coastline ...)

2. restaurant(name address telephone) � zagats(name address telephone) OR fodors(name address
telephone)

3. restaurant(name address telephone cuisine lat long) � zagats(name area telephone cuisine) AND
geocoder($area lat long)

4. jointfaculty(name rank) � csfaculty(name rank) AND businessfaculty(name rank) AND name
= name

Figure 4.1: Examples of Axioms

can be exploited to determine possible queries to sources and also determining what data

to prefetch and materialize. This will be illustrated in detail in the subsequent sections.

4.2 Identifying Possible Queries

The user queries are posed to classes in the domain or world model. However in most

mediator applications the user does not have to explicitly write the queries, rather queries

are posed through a graphical user interface (GUI). Typically the user interface places

further restrictions on what queries a user can ask. For instance the user may be able

to request only certain attributes, be able to specify selection conditions on only some of

the attributes, also for a selection condition it may be that the value (of an attribute in a

selection condition) must be from a prede�ned set. To be able to provide the speci�cation

of a GUI for a mediator application we have developed a GUI speci�cation language.

Having a declarative speci�cation of the GUI enables us to determine what queries can be

asked of the application. As mentioned earlier, this may be more restrictive than the kinds

of queries we could ask if we directly write structured queries without going through an

interface. Another bene�t of having a GUI speci�cation is that the GUI can be generated

automatically from this speci�cation.

We �rst provide an informal description of the GUI speci�cation language. There are

a number of things that we must specify in order to completely describe a GUI (from the

point of view of encoding what queries can be asked using the GUI). First we must specify

what are the attributes that can be requested. For instance in the countries application

we can request attributes such as area, coastline, national product etc. In this particular

application we can choose which of these attributes to retrieve. However there may be

GUIs for other applications where the user does not have the choice of selecting what

attributes to retrieve. For instance in TheaterLoc, the GUI has been designed such that
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Figure 4.2: Graphical query interface for countries mediator

the user always gets back the name, address and latitude and longitude of restaurants

and theatres in a selected city. The GUI speci�cation must thus also reect whether

or not the user has a choice of what attributes can be retrieved. Next we must specify

what kind of selection constraints the user can specify using the interface. For instance

in the countries application the user can specify constraints on either of name, region or

organization attributes. Also for each of the above attributes the user may select a value

for that attribute from one of a prespeci�ed list of values. For instance region must be

assigned to one of Asia, Europe, ... etc. We must also specify whether it is necessary that

the user specify a constraint on such attributes. For instance in the countries application it

is optional that the user specify a constraint on the name, region or organization attributes.
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However the TheaterLoc GUI is such that the user must always specify a city in which he

wishes to locate theatres and restaurants.

We use an SQL like syntax for the GUI speci�cation. In the SELECT clause we specify

what attributes can be retrieved and also whether the user has a choice of specifying

what attributes to retrieve. In the WHERE clause we specify what attributes the user

can specify constraints on, for each such attribute whether it is necessary to specify the

constraint and also whether the attribute value must be assigned to one of a �xed set of

values. In that case we also list the set of these values. As an example consider the GUI

speci�cation for the countries mediator shown in 4.3. In the SELECT clause we specify

the information that the attributes area, coastline,..., economy can be retrieved. We also

specify (using '' braces) that retrieving each attribute is optional. In the WHERE clause

we specify information such as the user can specify constraints on attributes like name

(the value of which must be one of Albania, ...,Zambia) etc. As another example consider

the GUI speci�cation for TheaterLoc shown in 4.4. The SELECT clause speci�es that we

retrieve attributes name, address, latitude, longitudes and maps of places. Also the set of

attributes retrieved is always �xed (shown by the '[' brace). The WHERE clause speci�es

that the user must specify a selection constraints on city, the value must be one of the

given set of values.

A BNF for the interface speci�cation is provided in 4.5.

SELECT {area, coastline, ... economy}

FROM countries

WHERE {name,1,(Albania, ...)} {region,1,(Asia,...)} {organization,1,(EEC,..)}

Figure 4.3: Example of Interface Speci�cation

SELECT [name,address,latitude,longitude,map]

FROM places

WHERE [city,1,(Los Angeles, Santa Monica, ... )]

Figure 4.4: Example of Interface Speci�cation

4.3 Axiom Pruning

Given the domain model and descriptions of information sources in terms of the domain

model the system precompiles axioms for all classes in the domain model. However as we
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<interface> ::= SELECT <fixedprojectlist> <optprojectlist>

FROM <application>

WHERE <conditions>

;

<conditions> ::= <cond> | <cond> <conditions>

;

<cond> ::= <freecond> | <fixedcond>

;

<freecond> ::= [ <attval> ] | { <attval> }

;

<fixedcond>

::= [ <attval> , <num> , <range> ] | { <attval> , <num> , <range> }

;

<range> ::= ( <valueslist> )

;

<valueslist> ::= | <valueslist> <attval> | <valueslist> , <attval>

;

<fixedprojectlist> ::= | { <valueslist> }

;

<optprojectlist> ::= | [ valueslist ]

;

<attval> : ATTVAL

;

<num> : NUMBER

;

<application> : APP

;

Figure 4.5: BNF for the interface speci�cation

described earlier, the user interface can place further restrictions on what queries can be

asked by users. As a result, not all of the axioms generated will be relevant i.e., be used

when answering queries in an application. For instance consider an interface speci�cation

where the user always asks for all the following attributes of restaurant (name address

telephone lat long). In this case axiom 2 is not relevant as it does not provide the attributes

lat and long. However axiom 3 is relevant as it provides all the attributes. Further if in the

interface we always had a selection condition on the cuisine attribute then axiom 2 would

not be relevant as the cuisine attribute is not provided in the domain class restaurant.

However axiom 3 would be relevant.
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PRUNE AXIOMS (S) f
FOR (all axioms A in S) f

D = domain concept(A)
M = mandatory projection attributes(I)
O = optional projection attributes(I)
C = mandatory condition attributes(I)
IF(all present(M,D) and one present(O,D) and all present(C,D) f
is relevant(A) = TRUE

g
ELSE f

is relevant(A) = FALSE
g

g

all present(X,D) f
return TRUE if all attributes in set X present in attributes of domain class D
return FALSE otherwise
g

one present(X,D) f
return TRUE if at least one attribute in set X present in attributes of domain class D
return FALSE otherwise
g

Figure 4.6: Algorithm for determining relevant axioms given a user interface speci�cation
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The algorithm for pruning axioms is given in �gure 4.6. It is a straightforward algorithm

which marks an axiom as relevant (to a given interface) after checking the following. First

all the attributes that are necessarily retrieved in a user query are present in the domain

class in the axiom. Also all the attributes for which a selection condition must (necessarily)

be speci�ed are also present in the axiom domain class.

4.4 Heuristics for Prefetching Data

Finally we analyze all the relevant axioms (in conjunction with the interface speci�cation)

to determine possibly expensive queries. Based on the kind of query (i.e., selection query,

join query etc.) and the database operations that are performed on a source or group of

sources we can determine classes of data which if prefetched and materialized will improve

the response time for the query. We enlist heuristics that tell us what classes of data to

prefetch for each kind of database operation that can be performed on the sources.

Unary operations:

1. The GUI speci�cation states that only projections are allowed on the at-

tributes in the source relation

For instance consider an axiom such as axiom 1 above i.e.,

country(name area coastline gnp population ...) � ciafactbook(c.name c.area c.coastline ...)

and suppose the query interface is such that we can only project out di�erent attributes

of the country domain class. In this case the only query that can be asked of the source

class is to retrieve one or more attributes for all tuples in the source class. It is best to

analyze the query distribution to see if the domain class is queried frequently and also

what groups of attributes are queried frequently.

2. The GUI speci�cation states that we can specify constraints on certain

attributes in the domain class (i.e., selection queries allowed)

Consider again axiom 1 but suppose the query interface is such that we can specify selec-

tion conditions on some attributes, say on attributes region and organization. A selection

operation can be expensive if it is not supported by the source. In that case it involves

scanning over all the tuples i.e., retrieving pages of all tuples from the Web source. The

ciafactbook is such a source where any selection operation involves fetching pages of all

270 countries from the Web source which is very time consuming. In case the number

of attributes on which selection conditions can be speci�ed is 'small'1 we materialize the

primary key and the the attributes of the source relation on which selection conditions

1The number of attributes is less than some preset threshold value in the system
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can be speci�ed. This enables us to perform the selection operations locally and thereby

avoid having to fetch all tuples (pages) of the source relation and the query response time

is considerably improved.

Binary operations:

3. Unions between source relations

For instance consider axioms such as axiom 2 i.e.,

restaurant(name address telephone) � zagats(name address telephone) OR fodors(name address

telephone)

For such queries both source relations can be just analyzed independently. The fact that

we are doing a union operation over the relations does not in any way a�ect the costs of

queries to the individual sources. Thus in this case we will not prefetch any data.

4. When we have joins between two source relations

If the join is expensive then we should materialize the primary keys of both sources rela-

tions as well as the attributes of the relations on which the join is being performed. Then

the join can be performed locally which improves the query response time.

5. When we have ordered joins between two source relations (in case of bind-

ing pattern constraints on attributes).

An ordered join is a special kind of join across Web information sources. An ordered join

is performed in case a join has to performed across sources one of which has a binding

pattern constraint. A binding pattern constraint essentially states that the value of one

or more attributes in the relation must be bound to get any data at all. For instance in

the above axiom 4 there is a binding pattern constraint on the address attribute in the

geocoder implying that the address must be supplied to get any data (in this case the

latitude and longitude of that address) from the geocoder source. To get the latitudes and

longitudes for the restaurants we �rst retrieve the addresses of all restaurants (from the

Zagatsla source) and then geocode them one after another. Due to the binding pattern

constraint that the address has to be provided and the structure of the online geocoder

which is such that it accepts only one address at a time, we can only geocode one address

at a time and this is exactly why ordered join operations are generally expensive.

There are 2 factors in deciding what to prefetch and materialize. First we must identify

on what data the ordered join(s) can be performed. For instance for an axiom such as

3 and with an interface where no selection conditions can be speci�ed on any of the

attributes the only data on which the ordered join can be performed is to geocode all

addresses from restaurants in the zagats source. However suppose we have an interface

where we must specify the cuisine type and also the only kinds of cuisine we can select are
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chinese or mexican. In that case the only ordered joins that would be performed are to

geocode addresses of either chinese or mexican restaurants from the zagats source. There

is a straightforward algorithm to determine on exactly what data the ordered join can

performed, given the axiom and the details of the selection conditions in the interface

speci�cation and we do not describe it further here.

Next we must determine what attributes are to be prefetched and materialized. In

case the domain class has a 'small' number of attributes (such as in axiom 2) we simply

materialize all the attributes in the domain class. However if the number of attributes is

very large (such as in axiom 1) we materialize just the primary key and the attributes in

the domain class on which selection conditions can be speci�ed.

6. Set Di�erence For instance consider an axiom such as:

foreign students(name,major) � students(name,major) - resident students(name,major)

It may be the case that both the source relations are very large, but the di�erence is very

small. For instance in the above example it may well be that the number of students

is large and also that almost all students are indeed resident students. In that case the

number of foreign students would be small and we could materialize this class.

7. Cartesian Product

The cartesian product of two relations generally results in a very large relation. We should

thus wait to analyze the query distribution before materializing a cartesian product of two

classes..

8. Set Intersection Consider an axiom such as:

double majors(name,age) � cs majors(name,age) and ee majors(name,age)

In many cases the two source relations could be very large relations but the intersection will

be a small relation that we can materialize. As in the case of set di�erence we materialize

the intersection if it is small.

9. The Division Operation

s1(a b) div s2(a)

Division is another time consuming operation. There will be cases where both s1 and s2

are large relations but the relation obtained after division is very small. Again as in the

case of the di�erence and intersection operations above we should materialize the resulting

relation.
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4.5 Materializing the Classes

Source structure analysis proposes a set of classes to prefetch and materialize as described

above. However we need to analyze some other factors as well before simply materializing

these classes. One factor we need to take into account is the maintenance cost for these

classes in the face of updates at the original sources. By analyzing the distribution of

queries using CM we will also have other classes that we must consider materializing.

Besides for each mediator application we assume we have a �xed amount of local space to

store the materialized classes and a �xed amount of maintenance cost that can be borne

to keep the materialized data up to date. Because of these constraints it may not be

possible to materialize all the classes proposed by source structure analysis or CM and we

must make an optimal selection of these classes. The factors considered and the process

of ultimately deciding to materialize a proposed class (on the basis of source structure

analysis or CM) are described in detail in Chapter 6. There we describe how exactly

multiple factors are considered in combination for materializing classes of data and an

admission and replacement policy for the materialized data store.

4.6 Summary

Let us summarize what we presented in this chapter. We introduced the idea of source

structure analysis which is a process of analyzing the structure of sources to predetermine

expensive kinds of queries to the sources and prefetching and materializing data to improve

response time for these queries. We described how precompiled axioms are used in query

processing in SIMS. We described a GUI speci�cation language that captures exactly the

kinds of queries that can be asked through a particular user interface. We showed how the

user interface speci�cation is used to identify the kinds of queries that can be asked and

the axioms that would be used. Finally we showed how using the interface speci�cations,

and the axioms that specify the sources used and operations performed on the data, we

are able to identify classes of data to materialize that can improve response time for the

expensive queries. The decision of actually materializing such classes is made considering

other factors and is discussed in more detail in Chapter 6.
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Chapter 5

Updates at Sources

We provide integrated access to data from Web sources and the data at these sources may

change. This can cause the materialized data to be inconsistent with that in the original

sources. In this chapter we discuss our approach to handling the issue of updates and

changes at the Web sources from which we materialize data.

5.1 Approach to Updates

The data materialized may change at the original Web sources. We must also provide

the user with consistent data even if it is accessed from the materialized data store. This

impacts our decision of materializing a particular class of data. In fact in some cases the

data may be updated so frequently that we should not consider materializing it at all. As

an example consider an online information source that provides the latest information on

ight arrivals and departures at a particular airport. Assume that the source is updated

every 10 seconds. Also it is fairly obvious that any user would want the most recent data

from this source. In case we were to materialize data from this source it would have to be

updated every 10 seconds which leads to a very heavy maintenance load for the mediator.

In such a case we may decide not to materialize data from this source at all as it is very

frequently updated.

For classes of data that we do materialize, our strategy is to refresh the materialized

data when it changes. There are two issues that then need to be addressed. First if the class

of data is indeed materialized then what is the frequency with which we need to refresh

the materialized data. Also, associated with each materialized class will be a maintenance

cost which is essentially an estimate of the time spent to keep the materialized class up

to date. It depends on the update frequency and the cost of querying the class using the

original sources and will be discussed more in detail later. The other issue is how does the
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maintenance cost a�ect the decision of whether or not to materialize a particular class.

Note that for any source we select portions of data to materialize based on the update

frequency and cost of various attributes. For instance for an information about movies

source we may materialize attributes such as movie listings, address and telephone number

of theater etc. that changes once a week (at most) and decide not to materialize data such

as `additional screenings' (last minute additional shows for some very popular movie) which

could change anytime. Another important feature of our approach to updates is that we

assume that the user will not necessarily always want the most recent data. He may in

many cases be willing to accept data that is a little stale in exchange for the advantage of

retrieving it fast. For instance there may be an online source providing brief descriptions

of cities in the US from the perspective of each city as a place to live, and it may be that

the source is updated every week. However it may be that the user is willing to accept

information about a city which is a month old.

For some sources the update time and frequency is known in advance. For instance for

the Yahoo movies source we know that it is updated once a week, every Friday. Other

sources may change at any time. For instance information at the Zagat source may change

any time. We should mention that there has been work done on automatically detecting

changes at Web sources [Chawathe et al., 1996] and a direction of future work is to

incorporate change detection into the update aspect of our system. For now we shall

simply refresh the classes of data materialized from sources that can change any time at

the frequency and time determined purely by user requirements.

To provide an outline of our approach to updates, we �rst specify for each mediator

application the update characteristics and frequencies of various sources and attributes.

We also specify the user's requirements for freshness of data. We then estimate, for each

class of data we consider materializing, the maintenance cost for that class of data. The

maintenance cost is then factored into the decision of whether or not to materialize a class

of data. In this chapter however we will concern ourselves only with the issues of how we

specify the update characteristics of a source and also how we compute the maintenance

cost for a class of data. How we factor the maintenance cost into the decision of whether

or not to materialize a class is to be considered in the context of the entire materialization

system and we will leave it for the following Chapter.
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5.2 Source Update Speci�cations

I have developed a language for describing the update characteristics and frequency of

updates for various source classes and attributes and also the user's requirements for

freshness of each domain class and attributes. I will illustrate the kinds of characteristics

we can specify using an example. Consider an information source for movies which we

model as a source relation movie src having attributes such as theatre, showtimes, actors,

director, review etc. Table 5.2 shows the update speci�cation for the movies relation and

some attributes, the speci�cation is implemented as a database relation.

CLASS MEMBERSHIP CHANGE TIME PERIOD TIME
MOVIE SRC A Y 1 week week:friday

Table 5.1: Characteristics of updates for a source class

It states that for the movie src source class, the membership='A' i.e., arbitrary

(instances of the class can be added or deleted), change = 'Y' i.e, yes (values of objects

or class members can change), time period is 1 week so the data changes once every week

and the time of change is every friday. The attributes change, time period and time

also characterize each attribute of a source class. By default for each attribute in a source

class the values of the update characterization attributes are propagated from the source

relation they are part of. So for instance the attribute `theatre' has the characteristics

change='Y', time period= 1 week etc. These defaults can be overridden by explicitly

stating the new values. So for instance we could specify the characteristics for the `actors'

attribute as shown in Table 5.2 since the value of actors for movie src does not change.

ATTRIBUTE CHANGE TIME PERIOD TIME
actors N - -

Table 5.2: Characteristics of updates for an attribute

More formally, update speci�cations are made for source classes and (optionally) for

attributes of source classes. The update speci�cation is the database relation shown in

Table 5.2. < class > is the name of the source class. < mem > standing for object mem-

bership in a class is one of `I',`D',`A'. `I' implies the membership of objects is monotonically

increasing. For instance suppose we have a class that consists of all the actresses that have

ever won an Oscar for best actress, then obviously such a class is monotonically increas-

ing. `D' implies that the membership of objects in the class is monotonically decreasing.

An example of such a class could be a class of personnel that served in Operation Desert

Storm and are still in military service. `A' implies arbitrary membership. For instance
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consider a class of USC faculty that are NSF Young Investigators, objects to this class

may both be added or deleted. This membership information is useful in that it further

helps the materialization system to optimally respond to changes to data in these classes.

For instance for a monotonically increasing class that we have materialized, we know that

the materialized data is valid for good and that objects to this class may only be further

added and not deleted. < change > is one of `Y', `N' depending on whether the source

classes changes or not. < period > is the time period of update if the source changes and

< time > is the time (day of week, month of year etc.) when the source will change.

CLASS MEMBERSHIP CHANGE TIME PERIOD TIME
< class > < mem > < change > < period > < time >

Table 5.3: Update speci�cations for a source class

ATTRIBUTE CHANGE TIME PERIOD TIME
< attribute > < change > < period > < time >

Table 5.4: Update speci�cations for source attributes

Table 5.4 shows the update speci�cation relation for attributes. < attributes > is a

source attribute and < change > , < period > and < time > have the same semantics as

for the source speci�cations.

For each domain class we also specify for each attribute the user's requirements for

freshness of data, actually stated in terms of how stale he can tolerate the data to be.

Consider a domain class called movie where we integrate information from several sources

about movies.

ATTRIBUTE TOLERANCE
theatre 0
showtimes 0
actors 0
director 0
review 6 weeks

Table 5.5: Staleness tolerances for attributes of a domain class

Table 5.5 shows the user's tolerance for various attributes of the domain class movie.

It states that the value of attributes such as `theatre' and `showtimes' must be current

(having a tolerance of 0) whereas the `review' can be up to 6 weeks old. Formally, a domain

class user requirement is speci�ed as the database relation in Table 5.6 where < class >

is a domain class and < tolerance > is the user's tolerance for staleness of data from
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that class. Table 5.7 shows the attribute tolerance speci�cations where < attribute > is a

domain attribute and < tolerance > is the user's tolerance for staleness of that attribute.

CLASS TOLERANCE
< class > < tolerance >

Table 5.6: Staleness tolerance speci�cations for a domain class

CLASS TOLERANCE
< attribute > < tolerance >

Table 5.7: Staleness tolerance speci�cations for attributes of a domain class

READ UPDATE SPECIFICATIONS() f
read sourceclass update speci�cations()
/* read update speci�cations for source classes */
propagate source update speci�cations()
/* source class attributes inherit from source class */
read domainclass tolerance speci�cations()
/* read domain class tolerances */
propagate domain tolerance speci�cations()
/* domain attribute tolerances inherit from domain class */
read sourceattribute update speci�cations()
/* read any explictly speci�ed source attribute speci�cations */
read domainattribute update tolerances()
/* read any explicitly speci�ed domain attribute speci�cations */
g

Figure 5.1: Reading Update Speci�cations

The update speci�cations are speci�ed in the language described above. The procedure

read update specifications shown in Figure 5.1 shows how update speci�cations are

read into the materialization system. Speci�cations for each source class are speci�ed

explicitly and by default propagated to the attributes of each source class. The tolerance

speci�cations for each domain class are also speci�ed explicitly and propagated by default

to the attributes of each domain class. We may also specify explicitly update characteristics

of individual attributes of source classes or tolerances of attributes of domain class.

5.2.1 Determining Maintenance Cost

The maintenance cost for a materialized class is one factor that must be taken into account

before materializing it. We de�ne the maintenance cost M for each class to be the time
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spent per day for retrieving the data for that class from the original sources to refresh

the materialized class. Just as we have a limited local space to store all the materialized

classes, we assume that we also have a limited total maintenance cost that can be borne by

the mediator for keeping all the materialized classes up to date. For each class of data that

we propose to materialize we must thus make an estimate of what will be the maintenance

cost for the materialized class. The maintenance cost is a product of the time taken to

query the class using the remote sources and the number of times it is updated per day.

Thus we have: M = F � C where F is the update frequency(number of updates per day)

and C is the time to query the class using the remote sources. C is estimated using a query

cost estimator in the Ariadne system. For determining F , the update frequency of a class,

we have an extremely simple procedure. Consider that the proposed materialized class has

attributes A1; A2; :::; An. For each attribute Ai in the proposed materialized class we look

up the tolerance Oi for that attribute from the user speci�cations for the domain class and

attribute tolerances. From the source de�nition we determine what attribute in a source

class maps to the (domain class) attribute in the proposed materialized class. We look up

the update time period Pi of that source attribute. The time period Ti with which the

attribute in the proposed materialized class must be updated is simply the greater of Oi

and Pi. Ti = max(Oi; Pi) The update frequency for each attribute Fi = 1=Ti. The update

frequency for the entire class which we propose to materialize is taken to be the maximum

of the update frequencies of the individual attributes. F = max(Fi). The procedures for

determining maintenance frequency and cost are shown in Figure 5.2

5.3 Predictable and Unpredictable Changes

Our approach is based on the assumption that the time and frequency of updates at any

source is known. This holds true for some sources. For instance we may know for sure

that data at a quote server source is updated every second starting at 8:00 am and up to

5:00 pm each day. But consider a source such as a Web site providing information about

the faculty in computer science at some university. Such data can be updated anytime.

In our approach we make a reasonable guess of the update frequency say we assume it

is updated once every month. Techniques have been developed for change detection of

semi-structured data [Chawathe et al., 1996] with a particular focus on semi-structured

data in Web sources. In future we intend to incorporate a subsystem for detecting changes

at sources for which the time of change is not known in advance and then notifying the

materialization system of such changes.
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Given: Proposed materialized class M with attributes A=A1; A2; :::; An

Returns: Frequency with which M should be refreshed
MAINTENANCE FREQUENCY(M;A) f
n=size(A)
for (i=1 to n) do f
Oi = tolerance(Ai )
Bi = mapsto(Ai) /* what source attribute maps to Ai */
Pi = updatetimeperiod(Bi)
Ti = max(Oi; Pi)
Fi = 1/(Ti)

g
F=max(Fi)
return(F )
g

Given: Proposed materialized class M with attributes A=A1; A2; :::; An

Returns: Maintenance cost if we materialize M
MAINTENANCE COST(M;A) f
F=MAINTENANCE FREQUENCY(M;A)
C = query cost(M;A)
return(F �C)
g

Figure 5.2: Procedures for determining maintenance frequency and cost
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5.4 Impact of Updates on Joins

There may be situations when some of the data we have materialized is not consistent with

that in the original store, speci�cally in cases where the user has requirements when he

is willing to accept data that may not be the most recent. We then use this materialized

data when the user queries this particular class. However there could be problems when

performing operations such as a join between this materialized data that is stale and fresh

data from the original sources. In this case we will end up performing joins between

di�erent versions of data which can lead to incorrect answers. As an example consider a

case when we have materialized a class containing data about the computer science faculty

at some university. Assume the source from which we get this data may change anytime

however the user is willing to accept data that is up to 1 month old. Now the data we

have materialized in this class may thus be as much as 1 month old. Now consider a

query which asks for faculty members that have joint appointments in computer science

and electrical engineering departments. This query involves performing a join between

the computer science and electrical engineering classes. Now we could do the join using

the materialized class for computer science faculty (which may be 1 month old) and the

electrical engineering faculty from the original Web source which is current. The answer

really is now \people who were faculty members in computer science one month ago and

who are faculty members in electrical engineering now". This is neither equivalent to

faculty members who had joint appointments one month ago (which is an answer that

the user may be willing to accept) or do so presently (which is exactly what the user

requested).

There are alternative ways to address this problem. One strategy is to ensure that

classes of data across which joins may be performed are always up to date (regardless of

the user's tolerances). We thus refresh these classes at the frequency with which the source

or attributes are updated. Determining what classes of data joins may be performed across

is straightforward as the query processing axioms have this information. An alternative

strategy is that join queries across domain classes are always answered using the original

sources instead of any materialized data. We have gone with the former approach. The

advantage of the former approach is that data is materialized so responses to queries

involving this data will of course be faster. This also means that the maintenance cost

may increase as the materialized classes must now be always kept up to date. The latter

approach of course leads to a decline in performance as the queries involving joins are now

answered using the remote sources.
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5.5 Summary

We introduced our approach to handling updates at sources. Our goal is to provide the

user with consistent data (according to his requirements). We presented a language for

describing update characteristics of sources and also user requirements for freshness. We

presented algorithms for estimating the maintenance frequency and cost of a given class

given such speci�cations. We also pointed out the impact of updates on joins involving

materialized data and data from the original sources and our approach to the problem. In

the next chapter we will see how the maintenance frequency and cost are factored into the

decision of materializing a class of data.
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Chapter 6

The Integrated Materialization System

We now describe how exactly various modules of the materialization system are pieced

together to perform the overall materialization task. We already discussed the order of

analysis and data ow between modules in Chapter 2. In this chapter we discuss the

admission and replacement policy for classes of materialized data and also the tasks of the

`main' materialization module. In essence we will conclude the description of how multiple

factors are combined to perform the materialization task for performance optimization.

6.1 Admission and Replacement

Classes of data to materialize are proposed by both query distribution and source structure

analysis. As we mentioned earlier, we may not be able to materialize all the classes as

we probably will have a limited space for storing the materialized data and also a limited

maintenance cost that we can bear for keeping the materialized classes up to date in the

presence of changes. The question is then how do we optimally utilize the given space

and maintenance cost for storing the materialized classes of data. Clearly if we cannot

materialize all classes, we must materialize those that will most reduce the query response

time for the mediator. Let us formalize the problem. For each proposed materialized class

we have an estimate of how much savings in query response time we get by materializing

it (we discuss the savings estimation in the following subsection). Also each class takes

a certain amount of space and has a certain maintenance cost associated with it. The

problem is then given a limited total space and total maintenance cost, what subset of

classes must we choose so as to maximize the total savings in query response time. We

present our solution after �rst describing how exactly we estimate the savings in query

response time for each proposed materialized class.
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6.1.1 Estimating Query Response Time Savings

The classes proposed for materialization are either on the basis of query distribution or

source structure analysis. When we materialize classes output by query distribution anal-

ysis, future queries to those classes are answered by retrieving all the data from a local

database as opposed to the remote sources. We consider the time to retrieve the data from

the local database to be negligible as compared to retrieving it from the remote sources.

Thus the savings achieved in query response time is simply the time taken to answer all

the queries in the query distribution that fall within the materialized class, from the re-

mote sources. Recall that query distribution analysis proposes classes to materialize by

merging several classes (queries) in the query distribution. For each such query, the query

cost estimator gives us an estimate of the query response time using the remote sources.

Initially i.e., before we run the CM algorithm, this cost estimate is taken to be the savings

for each class (query). In CM, as we merge classes, the savings for a merged class is taken

to be the sum of the savings of all classes that are merged to form the merged class.

For the classes proposed by source structure analysis we again consider the savings

time to simply be the time taken to answer the queries that could be answered using

the materialized class, from the remote sources instead. The estimation is a little more

complex as compared to estimating the savings for classes proposed by query distribution

analysis. First for each class we prefetch, we must estimate the time to answer the query

that we intend to improve response time for from the remote sources. Consider the case

of materializing the primary key and selection attribute for a source for which selection

queries on that attribute are expensive. Using the cost estimator we get an estimate of the

query answering cost using only the remote source(s). However the savings for the class

we prefetch is the total savings in query response time due to this class. We thus need to

know how many queries in the query distribution use the prefetched class and multiply

it by the time taken to answer a single query. The number of queries is not known of

course until we analyze at least one user query distribution. For prefetched classes thus

the savings is taken to be the product of the query answering time for queries (that will

use the prefetched class) using the remote sources and the number of queries in the query

distribution that use the prefetched class.

6.1.2 Algorithm for Admission and Replacement

After analyzing the query distribution we have an estimate of the savings for each proposed

materialized class (whether proposed by source structure or query distribution analysis).
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Let us formalize the problem of how to optimally use the resources of space and mainte-

nance cost for materialization.

Given: A set of proposed classes of data to materialize C1; C2; :::Cm

Each class Ci has savings Vi

Each class Ci occupies space Si and has maintenance cost Mi

Total space available for materialized classes = S

Total maintenance cost = M

Find: The subset Cj1; Cj2; :::; Cjm of C1; C2; :::; Cm such that �Sji � S;�Mji � M and

for which �Vji is maximized.

Solution: The above problem is basically the familiar Knapsack problem in 2-dimensions.

A greedy algorithm is used for the fractional Knapsack problem in one dimension. I present

a solution on similar lines for the 2-D (fractional) case. Assume S = M (if not originally

so, the Sis and S or Mi s and M can be scaled to ensure this). The following ensures an

optimal selection of classes:

(1) Sort the classes in descending order of the pro�t di = Vi=max(Si;Mi)

(2) Materialize classes in this order till either of S or M is used up.

Proof: The proof that the above greedy algorithm yields an optimal selection of classes

to materialize is based on an informal notion of savings "density" i.e., the savings per unit

space or maintenance cost. For ease of visualization consider a graphical version of the

problem. Consider each class Ci as a vector (x,y) in 2 dimensions, where x=Si and y =

Mi as shown in Figure 6.1. The problem is then to choose vectors that can be �tted

subsequently (end of one vector is beginning of next) in the space de�ned by (S,M) such

the total savings (of vectors in this space) is maximized. See Figure 6.2

At each stage we choose (from among the remaining vectors) one with maximum di =

Vi=max(Si;Mi). We claim that in space s = max(Si;Mi) and maintenance cost m =

max(Si;Mi); Vi is maximum savings that can be accommodated. Suppose this were not

true i.e., there may exist vectors Ck1; Ck2; :::; Ckn; n � 1 such that �Vkj > Vi. This implies

that �dkj �max(Ski;Mki) > Vi. In that case we also have max(dkj) �max(Si;Mi) > Vi

Thus max(dkj) > di

But this is not possible as Ci has been chosen such that di is the maximum from

amongst that of the remaining vectors. So Vi the savings of the vector with maximum di

is the maximum savings that can be achieved in space s = max(Si;Mi) and maintenance

cost m = max(Si;Mi). It follows that each step we use the maintenance cost and space
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Figure 6.1: Vector Representation of a Proposed Materialized Class
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Figure 6.2: Vector Representation of Optimization Problem (2-D Knapsack)
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optimally and choosing the vector with maximum di is better than choosing any of the

remaining vectors. Thus storing the vectors in descending order of di does indeed provide

an optimal selection of vectors.

The above algorithm thus provides the admission and replacement module with a

means to optimally select classes of data to materialize given system constraints of space

and maintenance cost. Each class is assigned a pro�t which is basically the ration of

estimated savings of that class to the greater of space occupied and maintenance cost

for that class. Classes are materialized in descending order of this pro�t. The analysis

of all the various factors is now complete with the identi�cation of classes of data to

�nally materialize. The admission and replacement module sends this information to the

materialization module which then fetches and materializes this data. We now describe

the tasks of the materialization module.

6.2 Materialization Module

The materialization module should be viewed as the `main' system module. When given a

set of classes to materialize (by the admission and replacement module) it issues queries to

the original sources and materializes the data. Materializing the data involves populating

the local database and also making appropriate changes to the domain and source models

for the mediator application to reect the incorporation of new (materialized) sources. It

must also now recompile the query processing axioms as the domain and source models

have changed. Finally it must refresh the materialized classes at appropriate time intervals.

It gets the frequency with which materialized classes should be refreshed from the update

module

Another task of the materialization module is to periodically reevaluate the material-

ized data. For any mediator application it is quite likely that that user query patterns

will change with time. In the materialization system we thus periodically reevaluate the

patterns extracted from the user queries by rerunning CM over the most recent queries.

We also re-evaluate the frequency with which various classes proposed by source structure

analysis are queried. The materialized data store is then re-populated with classes of data

that are optimal to materialize in the context of the most recent query distribution. An

appropriate time period with which the query distribution must be reevaluated will vary

from application to application. For instance for the countries mediator we could reeval-

uate the materialized classes once a month but for a mediator about theatres and movies
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such as TheaterLoc, it will be more appropriate to reevaluate the materialized data at

least once every week as movies change every week.

6.3 Summary

We described how the various modules are �nally integrated to perform the overall materi-

alization task. We described the admission and replacement policy for materialized classes

and also the tasks of the main materialization in interacting with a mediator to optimize

performance by materialization.
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Chapter 7

Experimental Results

We present experimental results demonstrating the e�ectiveness of our approach to op-

timizing performance by materializing data. In Chapter 3 we had presented results to

demonstrate the e�ectiveness of the CM algorithm in accurately extracting patterns from

user queries. In this section we demonstrate the e�ectiveness of a variety of aspects of

the materialization system. We demonstrate the e�ectiveness of source structure analy-

sis, extracting patterns and update cost analysis individually and also considering all the

above factors in combination. We also demonstrate the e�ectiveness of the admission and

replacement policy for materialized data classes as query patterns evolve over time.

7.1 Introduction

We provide experimental results that demonstrate the e�ectiveness of several aspects of our

approach to optimizing performance by selectively materializing data. We �rst provide a

brief description of the implementation of the materialization system that we developed for

Ariadne based on the architecture presented in Chapter 2. We then outline the hypotheses

that we test in the various experiments. We describe 3 di�erent Ariadne applications

that we use for the experiments. Finally we present the actual experimental results with

discussions.

7.1.1 Implementation of the Materialization System

We have implemented a materialization system for Ariadne based on the architecture

described in Chapter 2. The individual modules for source structure analysis, query dis-

tribution analysis, updates, admission and replacement, and the optimizer module are all

implemented in C. The module for query distribution analysis also uses Powerloom [Mac-

Gregor et al., ] as the knowledge representation system for maintaining the ontology of
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classes of interest identi�ed in a user query distribution. We used the Informix Univer-

sal Server Version 9.1 [inf, March1997] as the database system to store and manage the

locally materialized data. Also KQML [Finin et al., in press] was used for interprocess

communication. The materialization system (including the local Informix database) was

run on a Sun Ultra 1 (running Solaris) for obtaining the experimental results.

7.2 Experimental Hypotheses

We have made claims about how several di�erent aspects of our materialization system will

be e�ective in optimizing the performance of a mediator application. We list these various

hypotheses explicitly and our experiments are focussed on validating these hypotheses.

They are the following:

� Prefetching and materializing data by source structure analysis improves the response

time of queries for an application.

� Materializing frequently accessed classes of data extracted as patterns from user

queries improves the response time for queries in an application.

� The performance improvement in terms of improving query response time due to our

system is signi�cantly greater than that achieved with an existing scheme such as

page level caching using the same local space.

� Locally materializing data reduces the total work done in terms of time spent in

transferring data between the mediator and user (response time) or remote sources

and the mediator.

� The classes of materialized data evolve successfully with changes in the distribution

of user queries to keep the mediator application optimized.

7.3 Applications for Experiments

We tested the e�ectiveness of the materialization system using three di�erent Ariadne

applications that we have developed. These applications are in di�erent domains and

integrate information from a variety of di�erent Web sources. Testing the materialization

system in di�erent applications enabled us to demonstrate the e�ectiveness of the various

aspects of the materialization system and validate the several hypotheses mentioned above.

We present below an overview of the three Ariadne applications.
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7.3.1 Information about Countries

As described in the Introduction, the information about countries mediator is an Ariadne

application integrating information from the following Web sources:

� http://www.odci.gov/cia/publications/factbook/country.html (The CIAWorld Fact-

book) Provides interesting information about the geography, people, government,

economy etc. of each country in the world.

� http://www.nato.int/family/countries.htm (The NATO Homepage) From which we

can get a list of NATO member countries.

� http://www.un.org/Pubs/CyberSchoolBus/infonation/e infonation.htm (InfoNation)

Source which provides statistical data about UN member countries.

7.3.2 TheaterLoc

In the Introduction chapter we also mentioned TheaterLoc [Barish et al., 1999] which

is another Ariadne mediator application. TheaterLoc provides integrated access to Web

sources about movies and theatres, an interactive map server depicting their various loca-

tions and a video server from which users can see video trailers of movies playing at the

selected theatres. This application is available online at http://www.isi.edu/ariadne

Integrated access is provided to the following Web sources:

� Cuisinet. (http://www.cuisinenet.com) Web source providing information about

restaurants in various US cities.

� Yahoo Movies. (http://movies.yahoo.com/movies/) Provides theater and movie

showtime information.

� Hollywood.com. (http://www.hollywood.com) Movie previews source.

� E-TAK Geocoder. (http://www.geocode.com) Geocodes street addresses.

� US Census Map Server. (http://tiger.census.gov/cgi-bin/mapbrowse-tbl) Online in-

teractive map server.

7.3.3 Flight Delay Predictor

Finally we have the Flight Delay Predictor application for performing ight delay predic-

tions given information about a particular ight's departure and arrival times and airports,
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airline name, weather predictions from the Yahoo weather service

(http://weather.yahoo.com) and historical ight and weather data. A demo of this appli-

cation is available at http://www.isi.edu/ariadne/demo/tw/ .

7.4 Experimental Results

We now present experimental results to validate the hypotheses outlined earlier.

7.4.1 E�ectiveness of Source Structure Analysis

We tested the e�ectiveness of source structure analysis in all the three applications. We

used the materialization system to identify and materialize data locally in these appli-

cations. We measured the improvement in query response time due to prefetching and

materializing the data.

7.4.1.1 Countries Application

In the information about countries mediator the GUI is such that we can request one

or more attributes of a country (such as area, coastline, population etc.) and also spec-

ify selection conditions on the `name', `region' and `organization' attributes. The GUI

speci�cation for the countries application is shown in Figure 7.4.1.1.

SELECT {area coastline ...}

FROM countries

WHERE {name,1,(Albania,..)} {region,1,(Asia,....)} {organization,1,

(NATO,EEC,..)}

Figure 7.1: Speci�cation for Countries application GUI

Given this GUI speci�cation and the query processing axioms for the countries appli-

cation the materialization system prefetches and materializes the following class of data:

COUNTRY,(name,region,organization).

This is because of the fact that with the above interface the user can specify selection con-

ditions on the non key attributes `region' and `organization'. Also the particular source

that provides this data, the CIA World Factbook, is structured such that these selection

queries are expensive. Given these facts the system decides to prefetch and materialize the

primary key (name) and the selection attributes so that the selection can be performed
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locally. This speeds up the processing of selection queries considerably (demonstrated

below).

We used two query sets, Q1 and Q2 for this particular experiment. Q1 is a set of (200)

queries that we generated and Q2 is a set of actual user queries to the countries mediator

that was made available online for several months and for which we logged the user queries.

In Q1 we introduced some distinct patterns in the queries. We measured the total query

response time for the query sets Q1 and Q2 both without any data materialized and with

locally materializing the above class of data after source structure analysis. The results

are shown in Table 7.1 . As can be seen a very signi�cant improvement in performance is

achieved for both the query sets by locally materializing data based on source structure

analysis.

Query set Response Time Response Time %improvement
(No
optimization)

(With
Materialization)

Q1 38115 sec 9301 sec 75%
Q2 44186 sec 3775 sec 91%

Table 7.1: Source Structure Analysis for Countries Mediator

7.4.1.2 TheaterLoc

We ran several experiments to test the e�ectiveness of source structure analysis for mate-

rializing data in TheaterLoc. We ran experiments by considering di�erent kinds of GUIs

for the TheaterLoc application which had di�erences in the kind of data items that could

be retrieved and also the kinds of constraints that could be speci�ed.

We �rst assumed a GUI where the user would select from a list of cities and the The-

aterLoc application would display the restaurants and theatres in that city on a map of

the area. Given the GUI speci�cation and axioms for the application, the materialization

system prefetches and materializes the following:

RESTAURANT (place name, latitude, longitude) and

THEATRE (place name, latitude, longitude)

This is because in this particular application, for any query the mediator must plot the

restaurants and theaters on a map which requires having the latitudes and longitudes of

these locations. The latitudes and longitudes are obtained from an online geocoder (con-

verts street addresses to latitude and longitude) which is structured such that only one
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address may be geocoded at a time. As a result geocoding a set of places is very expen-

sive and the materialization system decides to prefetch and materialize the latitudes and

longitudes of all restaurants and theaters locally.

We present query response times (shown in Table 7.2) both without and with materi-

alizing data against a query set Q1 of queries that we generated for TheaterLoc.

Query set Response Time Response Time %improvement
(No
optimization)

(With
Materialization)

Q1 22013 sec 9432 sec 57%

Table 7.2: Source Structure Analysis for TheaterLoc

As we can see, prefetching and materializing data due to source structure analysis

greatly improves the performance of this application.

We then assumed a di�erent GUI for the same TheaterLoc application. First we choose

a bigger geographic area, i.e., say the entire Los Angeles area instead of choosing a smaller

city in the area. Next we allow constraints on the `price' attribute. So for instance we

could now specify a query such as \Find all the restaurants in the Los Angeles area in the

price range of $25 and below." As selection queries on the price attribute are expensive

(the source for restaurants is structured such that we have to scan the pages of all restau-

rants to determine which ones are in the speci�ed price range) the materialization system

decides to prefetch and materialize the following class of data:

RESTAURANT (place name, price)

This is addition to the classes identi�ed earlier i.e.,

RESTAURANT (place name, latitude, longitude) and

THEATRE (place name, latitude, longitude)

We present query response times both without and with materializing the above classes

of data against another query set Q1 of (30) queries that we generated for TheaterLoc.

The results are shown in Table 7.3 . Clearly the materialized classes are very e�ective in

improving the performance of the TheaterLoc application.

Query set Response Time Response Time %improvement
(No
optimization)

(With
Materialization)

Q1 89093 sec 11550 sec 87%

Table 7.3: Source Structure Analysis for TheaterLoc
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7.4.1.3 Flight Delay Predictor

For the ight delay predictor the system decides not to prefetch any class of data at all. The

only kind of query that is ever asked in this application is to retrieve the delay prediction

for a particular ight (by providing ight details such as the departure and arrival airports,

airline, ight times etc.) The only Web source that the Flight Delay Predictor needs to

access to answer the query is the Yahoo! weather source. However this is a source that may

change any time and we need the most recent data from the source. Also the time taken

to retrieve the weather prediction is not very high as only two pages (weather predictions

for the departure and arrival airports) need to be retrieved from the remote Web source.

Thus no data is prefetched.

7.4.2 E�ectiveness of Extracting Patterns

We then tested the e�ectiveness of materializing the frequently accessed classes of data

extracted as patterns by query distribution analysis. We measured the performance im-

provement due to materializing the frequently accessed classes of data (in addition to

materializing data proposed by source structure analysis) in each of the three applica-

tions.

7.4.2.1 Information about Countries

For the countries mediator we again used the query sets Q1 (of generated queries) and Q2

(of actual user queries). Table 7.4 shows the improvement in query response time. There

is a signi�cant overall improvement in performance. There is also an improvement in

performance over the case when data is materialized only on the basis of source structure

analysis (Table 7.1) , it is more signi�cant in the case of Q1 as there are distinct patterns

that we introduced in the queries.

Query
set

Response
Time

Response
Time

%improvement %improvement %improvement

(No
optimization)

(With
Materialization)

(total) (source
structure)

(query distr.)

Q1 38115 sec 1549 sec 96% 75% 21%
Q2 44186 sec 2174 sec 95% 91% 4%

Table 7.4: E�ectiveness of Extracting Patterns in Countries Mediator
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7.4.2.2 TheaterLoc

The results for the e�ectiveness of materializing frequently accessed classes of data for

TheaterLoc are shown in Table 7.5. In this application as well there is a further improve-

ment in performance over the case where classes are materialized just on the basis of source

structure analysis (Table 7.2).

Query
set

Response
Time

Response
Time

%improvement %improvement %improvement

(No
optimization)

(With
Materialization)

(total) (source
structure)

(query distr.)

Q1 22013 sec 1644 sec 93% 57% 36%

Table 7.5: E�ectiveness of Extracting Patterns in TheaterLoc

7.4.2.3 Flight Delay Predictor

For the ight delay predictor we did not materialize any data at all based on source

structure analysis. 7.4.2.3 shows the improvement in performance due to materializing

frequently accessed classes. The performance gain of 34% (over no materialization) is sub-

stantial. However it is signi�cantly less than the performance improvement achieved for

the countries and TheaterLoc applications. This is because all queries for the Flight Delay

Predictor require fetching just 2 pages from one Web source (retrieving the weather pre-

dictions from the Yahoo! weather service). As a result the queries to the Delay Predictor

even without any materialization do not take a very long time to execute.

Query
set

Response
Time

Response
Time

%improvement %improvement %improvement

(No
optimization)

(With
Materialization)

(total) (source
structure)

(query distr.)

Q1 2399 sec 1603 sec 34% 0% 34%

Table 7.6: E�ectiveness of Extracting Patterns in Flight Delay Predictor

7.4.3 Comparison with Page Level Caching

The third hypothesis states that the performance improvement achieved by our system will

be greater than an existing caching scheme such as page level caching. We implemented

a page level caching system for Ariadne and compared the performance improvement

achieved by our system with that achieved by page level caching using the same local

space.
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The results are presented in Table 7.7 for the countries application, in Table 7.8 for

TheaterLoc and in Table 7.9 for the Flight Delay Predictor.

Query
set

Response Time Response
Time

Response
Time

%improvement %improvement

(No
optimization)

(Our System) (Page Level) (Our
System)

(Page Level)

Q1 38115 sec 1549 sec 34320 sec 96% 10%
Q2 44186 sec 2174 sec 37993 sec 95% 14%

Table 7.7: Comparison with Page Level Caching for Countries Mediator

Query
set

Response Time Response
Time

Response
Time

%improvement %improvement

(No
optimization)

(Our System) (Page Level) (Our
System)

(Page Level)

Q1 22013 sec 1644 sec 17832 sec 93% 19%

Table 7.8: Comparison with Page Level Caching for TheaterLoc

Query
set

Response Time Response
Time

Response
Time

%improvement %improvement

(No
optimization)

(Our System) (Page Level) (Our
System)

(Page Level)

Q1 2399 sec 1603 sec 1846 sec 34% 23%

Table 7.9: Comparison with Page Level Caching for the Flight Delay Predictor

For the countries mediator, the performance optimization achieved by our materializa-

tion system is much greater than with page level caching. This is because for this particular

application most of the data is retrieved from the CIA World Factbook source in which

each page is fairly large containing information on various attributes of a country. With

page level caching we are committed to storing all (or none) of each page and as a result

the local space for materialized data is not used optimally. With our system we have much

more exibility in selecting the information on each page that must be materialized and

thus the local space is used much more e�ciently. For TheaterLoc also the performance

improvement due to our system is substantially greater than with page level caching. In

the case of the Flight Delay Predictor though the improvement due to our system over

improvement due to page level caching is not as high as the other applications. This is

because in this application the only pages we retrieve are those of weather predications

from Yahoo!. From these pages we extract all the information about the weather pre-

diction (i.e., forecast for that day and following few days). Now storing the entire Web

page takes only a little more space than storing the data that we extract from the page.
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In our system we end up storing the extracted data, in page level caching we store the

entire pages (queried frequently). Thus there is not a very high di�erence in performance

improvement due to our system vs page level caching.

7.4.4 Updates

The fourth hypothesis states that the total work done (in terms of time spent in transferring

data) is less in the case when we locally materialize data. We set up an experiment (for the

countries mediator application) where we vary the update frequency (arti�cially) of the

CIA World Factbook source from 0 to 20 updates per day. For each frequency we measure

the total work done with and without materialization for query set Q1. The total work

done with materialization is the sum of the user query response time and the time spent

to keep the materialized data up to date. The total work done without materialization is

simply the user query response time.
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Figure 7.2: Work done with and without materialization

The results are shown in 7.2. As we can see, for all update frequencies the total work

done with materialization is less than the total work done without materialization. As the
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update frequency becomes higher, the system materializes fewer classes of materialized

data as the total maintenance cost gets higher.

7.4.5 Evolving Query Distribution

The �nal hypothesis is that the materialization system adapts to changes in the user query

distribution. Speci�cally if the patterns of frequently accessed classes of data change then

the materialization system locally materializes the new more frequently queried classes of

data, replacing existing materialized classes that are not queried frequently.
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Figure 7.3: Evolving with the Query Distribution

We set up an experiment for the countries mediator where we started with an existing

query distribution Q1 of 200 queries. Q1 is such that it has a pattern of 6 frequently

accessed classes of data. We then incrementally changed the query distribution to one

having a pattern of 6 entirely di�erent classes of frequently accessed data. We would at

each stage of change remove an existing class in the pattern and insert another di�erent

class of frequently accessed data in the pattern. For instance starting with a distribution

having a pattern fC1,C2,C3,C4,C5,C6g representing classes of frequently accessed data,

we would change the pattern to fC1',C2,C3,C4,C5,C6g, then to fC1',C2',C3,C4,C5,C6g

etc.
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The materialization system adapts to changing query patterns by periodically re-

evaluating the query distribution, inserting new more frequently accessed classes of data

into the materialized data store and replacing existing classes if necessary. To evaluate

whether the materialized data store indeed successfully evolves with a changing query dis-

tribution, we changed the query distribution incrementally as described above. We then

measured the total query response time for the query set Q1 (as it evolves) both with

and without the materialization system doing re-evaluation of the query distribution (and

adding and replacing classes of materialized data if necessary). The results are shown in

7.3. The response time is measured at the stages when the query distribution is incremen-

tally changed. These are the even numbered stages 2,4,6, etc. It is also measured between

the stages when the query distribution is changed i.e., at the stages 1,3,5 etc.

We begin at the stage when the classes of data in the initial pattern in Q1 are ma-

terialized and the response time is quite low. Let us look at the response times without

re-evaluation. The total query response time suddenly increases at each stage when we

change the query distribution. This is because there is now a new class of frequently ac-

cessed data in the distribution but is not materialized locally. As a result the response time

increases each time the distribution changes. As the system does not adapt to changes with

changes in the query distribution, performance just degenerates with a changing distribu-

tion. In the case where the materialization system does re-evaluate the query distribution

(and makes changes to the materialized data store if necessary) the response time does

not increase monotonically as in the previous case. While the response time does increase

when the distribution changes, re-evaluation causes the new class of frequently accessed

data to be eventually materialized locally thus reducing the response time. This can be

seen graphically in 7.3 where though the response time increases each time the distri-

bution is changed, it is eventually lowered as the materialized data store evolves. This

experiment thus validates our hypotheses that the materialization system is indeed able

to adapt to a changing query distribution.

7.5 Summary

We presented experimental results demonstrating the e�ectiveness of a variety of aspects

of our materialization system. We tested the system using three di�erent Ariadne appli-

cations. The e�ectiveness of di�erent portions of the materialization system can vary with

the application. As a whole however the materialization system is indeed very e�ective in

optimizing performance for any application. The total work done in terms of data transfer
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is less when data is locally materialized. Finally the materialization system is able to

successfully adapt to changes in the user query distribution.
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Chapter 8

Related Work

In this chapter I �rst discuss how my work relates to several other research e�orts that also

aim at optimizing performance of various systems such as databases, operating systems or

Web servers by materializing or caching data. I then describe in detail how my approach

can be applied to several other mediator systems that are based on an architecture similar

to that of Ariadne.

8.1 Related Work

Improving performance by materializing or caching data is a topic that has been extensively

investigated in the context of client{server database systems, operating systems and more

recently for proxy servers for the Web. Also although there are several e�orts in progress on

building information integration mediators, very few have addressed the issue of improving

performance by materialization or other means. The problem is also similar to the view

selection problem when deciding what views to materialize in a data warehouse. I now

provide a comparison of my work with these e�orts.

8.1.1 Semantic Caching in Databases

Most work on client-server database-systems caching and operating-systems caching has

focused on tuple-level or page-level caching. Only recent approaches are based on semantic

level [Dar et al., 1996] or predicate based [Keller and Basu, 1996] caching. Semantic or

predicate-based caching is a form of caching where portions of data that can be described

using predicates are cached. For instance consider an employee relation in a database

with attributes name, age, salary, address. We could cache a portion of this relation such

as \ the names and addresses of all EMPLOYEEs earning more than $50,000 per year" .
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This can be described using the following predicate based description:

EMPLOY EE(name; ; ; address) AND salary > 50000

The advantage of semantic caching (over tuple-based or page-based caching) is that we

are more exible in terms of specifying exactly what to cache. A semantic caching system

also includes a mechanism for containment checking i.e., given a user query, it uses the

predicate descriptions of the cached data to determine what portion of the query can be

answered using the cached data. As far as representation and use of materialized data

are concerned, our approach is quite similar to that of a semantic caching system. Using

LOOM we provide a semantic description of the cached data. Also the query planner

reasons with these descriptions when generating a plan to answer a user query. As the

planner also determines what portions of the query may be answered using the materialized

data sources it does the containment checking step in the process of query planning.

A problem with the semantic caching approach is that that the containment checking

problem i.e., determining exactly what portion of the data requested in a user query is

present in the cache, is hard and having a large number of semantic regions creates perfor-

mance problems. A solution proposed in [Keller and Basu, 1996] is to reduce the number

of semantic regions by merging them whenever possible. This is in fact an idea we have

built on. In the CM algorithm we have presented an approach for systematically creating

new semantic regions to consider for materializing and merging them when possible.

8.1.2 Caching in Web Servers

Caching schemes have also been proposed for Web proxy servers [Chankunthod et al.,

1995] to reduce the amount of data that must be shipped over the internet. However these

approaches are based on caching at the level of individual Web pages, which we argued is

not optimal in our environment. In fact we have demonstrated through experiments that

our approach does indeed out perform caching or materializing at the level of entire Web

pages.

8.1.3 Caching in Federated Databases

An approach to caching for federated databases is described in [Goni et al., 1997]. Theirs is

also a semantic caching approach where the data cached is described by queries. They also

de�ne some criteria for choosing an optimal set of queries to cache. Finding the optimal

set is an NP-complete problem and they use an A* algorithm to obtain a near optimal

solution. A limitation of their approach is that the cached classes can only be in terms of
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classes in a prede�ned hierarchy of classes of information for a particular application. My

approach is much more exible in that we dynamically construct classes of information to

materialize.

8.1.4 Materialized Views

My work is also related to recent work on view selection in a data warehousing environment.

One of the most important decisions in designing a data warehouse is selecting what views

to materialize so that the total query response time is minimized with a constraint such

as limited storage space and/or cost of maintaining the views. [Yang et al., 1997] and

[Gupta and Mumick, 1998] show that this is an intractable problem and present heuristic

algorithms for near optimal solutions. However the warehousing problem di�ers from my

problem in the following aspects:

(i) There is a �xed set of views in the warehousing problem and a decision is to be made

for each view whether to materialize or not. In the mediator environment we dynamically

propose new views to materialize. Also the number of views proposed must be kept small

from a query processing perspective.

(ii) In the warehouse environment the views represent either base tables at the indi-

vidual databases, user queries to the warehouse or intermediate results of computing user

queries from the base tables by applying relational algebra operations one at a time. In the

mediator environment however the \views" are actually classes of data de�ned in terms of

the mediator model as described earlier.

(iii) Query planning is not an issue in warehousing as the number of views is small and

queries are to particular views. In the mediator problem however we must ensure that the

query planning cost is kept small by keeping the number of new views created small.

There are also di�erences in the update aspect of the problem i.e., taking the mainte-

nance cost into account when materializing views and strategies for keeping the material-

ized data consistent. They are summarized below as follows:

(i) The costs that are to be minimized. In the warehouse environment the primary

update cost (that we would like to keep limited) is the cost of scanning large relations from

the disk into main memory and main memory processing on large tables. As such most

work on optimizing maintenance of materialized views in the warehouse environment has

focused on incrementally maintaining materialized views [Gupta et al., 1993] (as opposed

to fully recomputing the views) in order to save processing time for view maintenance.

There is further work on \self-maintainable" views [Quass et al., 1996] where auxiliary

data (typically keys of relations etc.) is also materialized in order to save the cost of
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fetching that data from the disk when updating a materialized view. In the mediator

environment however the primary cost is that of fetching data from remote sources such

as fetching pages over the internet and the cost of main memory processing is relatively

small. We must thus ensure that the data fetched from the remote sources for updates is

kept limited. There being an order of magnitude di�erence between the cost of retrieving

data from remote sources and the cost of main memory processing, it makes sense to

�rst minimize the data retrieved from the remote sources and only then consider further

optimizations for main memory processing.

(ii) Maintenance strategies in case of updates. In the warehouse environment typically

changes to the relations in individual databases (deltas) are sent to the warehouse, the

changes are smaller than the entire updated relation and thus cheaper to send. The

algorithms developed for view maintenance can update the materialized views given only

the changes and the existing views. Algorithms have also been developed for incremental

maintenance of views over semi-structured data [Abiteboul et al., 1998] and it is shown

that incremental maintenance is cheaper than fully recomputing the views in most cases.

In the mediator environment however determining the change to relations in a remote

source such as a Web source is often as expensive as retrieving the entire new relation

and the cost of recomputing the entire view will only be marginally more than that of

incremental maintenance.

(iii) Detecting changes at the sources. In the warehousing environment the time and

frequency of changes to the sources databases is given and triggers are sent from the

source databases to the mediator notifying the changes. In the mediator environment we

determine the frequency with which each materialized class needs to be updated given

the update characteristics and user's freshness requirements, and simply recompute the

materialized class with that frequency.

8.1.5 Mining Association Rules in Data Mining

Finally the problem of extracting patterns from queries is somewhat similar to the problem

of data mining, particularly that of mining association rules [Agrawal et al., 1993]. The

problem of mining association rules is that of extracting implications of the form X ) Y

from a database where X � I and Y � I and X \ Y = �, where I = fi1; i2; :::img is

a set of data items. The patterns that we extract from queries can also be looked upon

as implications. For instance a pattern such as \economy and population of European

Countries " is an implication European Countries ) (economy, population). Extracting

patterns however di�ers from mining association rules in several respects. First, when

75



mining association rules, the antecedent X in an implication X ) Y could be any X � I

where at least a certain minimum percentage of transactions in the database containX[Y .

In extracting patterns the antecedents are just the individual classes and subclasses of data

queried. Second, we do not cluster data items in the consequents in the implication rules

whereas in extracting patterns we do try and group together data items in consequents (for

the same antecedent) that overlap well. Third, when extracting patterns we can extract

patterns when the antecedents (classes and subclasses) are organized in a class/subclass

hierarchy. This hierarchy is dynamically generated. In mining association rules however

the hierarchy in which antecedents may be organized is prede�ned and �xed [Srikant and

Agrawal, 1995]. Finally mining association rules is often done for databases of very large

size and the optimizations focus on issues like minimizing the disk scans of the relations

for data mining. In extracting patterns the entire query distribution being analyzed can �t

into main memory and the optimizations for minimizing disk scans are not required. For

all the above reasons the algorithms for mining association rules cannot be directly applied

to the problem of extracting patterns which is why we developed the CM algorithm for

this task.

8.2 Applicability to Other Mediators

I now provide a discussion on how the ideas of my thesis can be applied to several other

related mediator systems that have been built by other research groups. All of these

systems perform essentially the same task as SIMS and Ariadne i.e., integrating data from

databases or Web sources, also the high level mediator/wrapper architecture is similar

across these systems. It is thus worth while considering how the performance optimization

by materialization approach presented in this thesis would apply to these other systems.

The most important issues when considering applying our materialization system to

other mediators are:

� Representation and query planning issues. How will the idea of de�ning the materi-

alized class of data as another source apply in that system? What will be the impact

on query processing, i.e., how do we ensure that materialized data is e�ectively used?

� How will the ideas for selecting data to materialize based on source structure analysis,

query distribution analysis and updates apply?

� Can our approach to updates at Web sources be incorporated in that system?

We now discuss each of the above issues in detail.
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8.2.1 Representation and Query Planning

For each of the other mediator systems I will �rst provide an overview of the information

modeling and query reformulation aspects of the system as these are central to under-

standing how our materialization approach can be applied. We then discuss if and how we

can represent the materialized data as another source in that system and also the impact

on query planning.

8.2.1.1 Information Manifold

The Information Manifold [Levy et al., 1995] is an implemented system that provides uni-

form access to structured information sources on the World Wide Web. A user is presented

with a world-view which is a set of relations (including a class hierarchy) modeling the kinds

of information that can be obtained from the available sources. For instance consider again

the restaurant example that we have been using throughout. The world-view includes the

relation Restaurant(name, address, city, telephone, cuisine, review, rating) providing an

integrated world view of restaurants. The world view also contains a hierarchy of classes

as shown in 8.1.

Restaurant

LA               Santa Monica   Beverley Hills
Restaurants          Restaurants      Restaurants

Figure 8.1: Hierarchy of classes in world view

The system also contains descriptions of the contents of the individual information

sources which contain the actual data. The representation language used for the world

view and information source descriptions is an extended description logic called carin-

classic. The information sources are described in terms of the world view relations. Each

source is described by a conjunctive formula which describes the constraints satis�ed by

facts in the relation found in the source. For instance suppose we have a source that

provides information about \Santa Monica" restaurants. We can model it as:

v(name,address,city,tel,cuisine,review,rating): Restaurant(name,address,city,tel,cuisine,

review,rating) ^ city="Santa Monica"
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We could describe a materialized source of data in a similar fashion. For instance

suppose we materialized the name and address of all chinese restaurants. We describe this

materialized source as:

v(name,address): Restaurant(name,address,city,telephone,cuisine,review,rating)

^ cuisine="Chinese"

We now need to examine how the query processor will use the contents of the mate-

rialized data sources. In Information Manifold the queries to the system are formulated

in terms of world view relations, however the system must generate a query plan that

uses the information sources to answer the user query. The query reformulation algorithm

�rst decides which sources are relevant given a user query. This is done by reasoning

with constraints provided in the query as well as the information source description on

the basis of which some sources may be pruned as not relevant to answering the query.

Next the algorithm computes conjunctive plans by considering the possible combinations

of relevant sources. The algorithm is designed to generate sound plans i.e., all the an-

swers it produces are guaranteed to be answers to the query. The algorithm also generates

minimal query plans, a query plan is minimal if we cannot remove a subgoal from the

plan and still obtain a sound plan. The algorithm generates minimal query plans in or-

der to answer the query with accessing the minimum possible sources. Now the query

processing algorithm will also consider a materialized data source in generating a query

plan. However a minimal query plan may be a misleading criterion for estimating the cost

of a query plan. What we would need the algorithm to do is to consider all the possible

conjunctive query plans, compare the costs of the query plans using a cost estimator and

choose the plan with minimum cost. The question to ask then is whether the Information

Manifold algorithm query reformulation algorithm produces all the necessary conjunctive

query plans. This is closely related to the problem of answering queries using materialized

views. The problem of answering queries using views has however been shown to be NP-

complete in the number of information sources. So as in the case of SIMS, creating too

many information sources for materialized data will cause performance problems for the

query planner in Information Manifold too. Our solution to the problem by creating just

a few new information sources by describing the data more compactly is applicable here

also. By describing the materialized data classes compactly we create few new information

sources in the system. To summarize the above, the materialized data can be described as

an auxiliary information source in the Information Manifold system too as shown above.

The query processor however needs to be extended to take cost information into account
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also so as to prefer to use the materialized data sources. Also creating too many new

information sources will cause performance problems for the query planner and a compact

description will help create just a few sources.

8.2.1.2 Infomaster

Infomaster [Genesereth et al., 1997] is another information integration system. The rep-

resentation of the integrated world view and the information sources is done in a manner

very similar to that in Information Manifold. We have world relations that are global rela-

tion names against which the user poses queries. For instance for the restaurants domain

we could have the world relation:

Restaurant(name, address, city, telephone, cuisine, review, rating)

Source are described by source relations. Relationships between source and world

relations are speci�ed by describing each source relation as the result of a conjunctive

query over the world relations. For instance for the restaurant domain, a source providing

information about restaurants in Santa Monica would be described as the view:

CREATE VIEW Santa_Monica_Restaurants

SELECT name, address, city, telephone, cuisine, rating, review

FROM Restaurant

WHERE city = ``Santa Monica''

We can now describe a class of materialized data, say the name and address of all

chinese restaurants as an auxiliary information source as the view:

CREATE VIEW Chinese_Restaurants

SELECT name, address

FROM Restaurant

WHERE cuisine = ``chinese''

In this framework thus the problem of �nding a query plan given a user query, is

the same as the problem of answering queries using views. A distinguishing feature of

the query planner in Infomaster is that they also �nd maximally contained query plans.

It may be the case that not all the information requested by a user can be answered

given the set of information sources available, however a portion of it may be answered.

As opposed to other systems where we �nd a query plan which is exactly equivalent to

the given user query, Infomaster �nds maximally contained query plans i.e., plans that
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return as much of the user's query as can be answered given the available sources. The

system exploits functional dependencies between attributes of various relations and is able

to generate recursive query plans. It is shown that recursive query plans are necessary in

order to have maximally contained plans. The system is also able to generate query plans

with disjunction. Infomaster also considers the problem of query plan optimization. An

information source siis represented by two views: vi which is a lower bound of si and vi

which is an upper bound of si. The query processing algorithm of Infomaster generates

what they call semantically correct, source complete and view minimal query plans. A

query plan P is semantically correct with respect to a user query Q if P is contained in Q

for all instances of the source relations s1; s2; :::; sn consistent with the given conservative

and liberal views. A query plan P is said to be source complete if every semantically

correct query plan P 0 is contained in P for all instances of the source relations s1; s2; :::; sn

consistent with the given conservative and liberal views. For optimizing the query the

system must consider the cost of coming up with the answer. The Infomaster system

uses the notion of view minimality. A query plan P is view minimal if every semantically

correct and source complete plan P 0 queries at least as many information sources as P .

Infomaster generates semantically correct, source complete and view minimal query plans.

Briey the query planning algorithm works as follows. In the �rst step a semantically

correct and source complete query plan is generated using one of the algorithms in [Levy

et al., 1995] . In the second step, redundant parts of this query are eliminated to produce

view minimal plans. As in the case of Information Manifold it can be argued that view

minimal query plans may not necessary be the cheapest and the system must compare the

costs of executing various semantically correct and source complete plans and choose the

one which is least expensive to execute. Creating too many sources for materialized data

will cause performance problems for the query planner in this system as well.

8.2.1.3 TSIMMIS

TSIMMIS [Hammer et al., 1995] represents a query centric approach to information inte-

gration which is di�erent from the approach of the above Information Manifold or Info-

master systems. In TSIMMIS we specify using a mediator speci�c language how a query

can be answered using the various information sources available. Assume that we have two

sources providing information about restaurants, namely zagats and fodors. The sources

can be accessed through wrappers around the sources (say we name the wrappers za-

gatswrap and fodorswrap respectively). Both the sources export i.e., provide information

about restaurants. Say the zagats source exports the relation zagat restaurants and the
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fodors source exports the relation fodors restaurants. We can provide an integrated view

of a relation restaurants by specifying:

<restaurant {<name N> <address A> <review R>}> :-

<zagats {<restname N> <address A> < review R>}>@zagatswrap OR

<fodors {<name N> <location A> <review R>}>@fodorswrap

In the TSIMMIS approach we thus directly specify how various information sources

can be combined to answer a user query. The advantage is that no query planning is

really required as the plan of how to combine sources is already laid out in the mediator

speci�cations. The disadvantage is that the approach is not at all suited for cases where

information sources may be added or deleted frequently as the entire mediator speci�cation

must be rewritten with each change. Suppose we did materialize the names and reviews

of all chinese restaurants we could include the materialized data source by specifying:

<chinese_restaurant {<name N> <review R>}> :-

<chinese_restaurants_materialized {<name N> <review R>}>@chineserestwrap

We have to create one such speci�cation for each materialized data class. A major

limitation in TSIMMIS is that there is no facility for query containment checking. Unlike

SIMS, Information Manifold or Infomaster where the query planner can determine what

portion of a user's query can be retrieved from the materialized data sources, in TSIMMIS

user queries are posed directly to classes that the mediator makes available. As the user

is limited to posing queries to only these classes query containment is not required to be

done at all. Given this, our approach would not apply well to the TSIMMIS system which

is more suited for cases where the user has a good idea in advance of what classes are to

be queried and the set of information sources does not change frequently.

8.2.1.4 InfoSleuth

InfoSleuth [Bayardo et al., 1996] is a system for information integration from multiple

sources based on an agent architecture. We provide a brief description of the primary

agents in the system. The User Agent helps in formulating user queries and displaying

results. The Ontology Agent answers queries about ontologies. The Broker Agent records

advertisements from all InfoSleuth agents on their capabilities and responds to queries from
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agents as to where to route their speci�c queries. Associated with each information source

is a Resource Agent that provides a mapping from the common ontology to the database

schema and language native to that source. The Task Execution Agent coordinates the

execution of high level information gathering subtasks. Query planning is treated as a

planning problem in InfoSleuth in much the same way as in the SIMS system. The Task

Execution Agent uses a query planner for generating information gathering plans that is

very similar to the query planner of SIMS.

Our materialization approach would apply well to the InfoSleuth system. For each

class of materialized data we simply need to create a new Resource Agent and register its

capabilities with the Broker Agent. Now the materialized data source is also considered

when the query planner is generating an information gathering plan. Our approach of

having compact descriptions for materialized data and thus creating fewer new sources

will be helpful as a large number of new sources will create performance problems in

InfoSleuth as well.

8.2.1.5 DISCO

disco [Tomasic et al., 1997] is another mediator system for integrated access to multiple

heterogeneous database systems. To describe the integrated world view disco uses a data

model based on the ODMG-93 data model speci�cation. For instance an integrated view

of restaurants could be de�ned as the class:

interface Restaurant {

attribute string name;

attribute string address;

attribute string cuisine;

attribute string review; }

The contents of an information source are speci�ed by specifying the relation it provides

along with the name of the wrapper for accessing its data and the name of the data source.

Also we specify a mapping between the source relation and attributes and a class and

attributes provided by the mediator.

For instance suppose zagats was one source providing information about the Restaurant

class. We would specify this as:

extent restaurant0 of Restaurant wrapper w0 repository r0

map ((zagats0=restaurant0), (name=n), (address=a), (cuisine=c), (review=r));
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In this framework we can de�ne a class of materialized data too as another source in a

similar fashion. For instance a materialized data for the name and address of chinese can

be incorporated by �rst de�ning a subclass of Restaurants as:

interface Chinese_Restaurant: { Restaurant(cuisine= ``chinese'') }

and the source de�nition as:

extent chineserestaurant0 of Chinese_Restaurant wrapper w1 repository r1

map ((matchinese0=chineserestaurant0), (name=n), (address=a));

The disco query processor uses a query reformulation process on the lines of [Kirk et

al., 1995] in query planning and optimization. So in this system also it is advisable not

to create too many such new information sources for materialized data and instead used

a compact description creating few new sources.

8.2.1.6 Garlic

We �nally mention Garlic [Haas et al., 1997] , which is a system and set of tools for the

management of large quantities of heterogeneous multimedia information. An integrated

view over several heterogeneous and multimedia sources is provided through a uni�ed

schema expressed in an object-oriented data model. It can be queried and manipulated

using an object-oriented dialect of SQL. The data in individual data sources is made

available by wrappers around these sources. Each wrapper turns the data available in

its underlying repository into objects accessible by Garlic. Each Garlic object has an

interface that abstractly describes the object's behaviour. Wrappers provide a description

of their contents using the Garlic Data Language (GDL) which is a variant of ODMG's

Object Description Language (ODL). For instance a source providing information about

Restaurant objects (say an information source such as the zagats Web source) would

describe its contents as:

interface Restaurant {

attribute string name;

attribute string address;

attribute string cuisine;

attribute string review;}
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The Garlic framework is such that a new information source can be incorporated with

ease and without changing existing portions of the description as has to be done in TSIM-

MIS. A materialized data source (continuing with our example of the name and address

of chinese restaurants) can be described similarly. We create a subclass of Restaurants

(say Chinese Restaurants) in the object-oriented model for the restaurant domain. The

materialized data source can then be described as:

interface Chinese_Restaurant{

attribute string name;

attribute string address;

}

The issue of the impact on query processing now remains. Garlic has a query planning

process quite di�erent from any of the above mediator systems. Query planning involves

the stages of parsing, semantic checking, query rewriting and query optimization. Garlic

is one of the few systems that takes cost-estimates into account in generating query plans.

STARs(STrategy Alternative Rules) are used in the query optimizer to describe possible

execution plans for a query. The optimizer uses dynamic programming to build the query

plans bottom up. First, single collection access plans are generated followed by a phase in

which 2-way joins are considered, followed by 3-way joins etc., until a complete query plan

for the query has been chosen. Although this dynamic programming method scales well

to a large number of information sources the process is still exponential in the information

sources. As with other mediator systems again it is dis-advantageous to create too many

new information sources and a compact description will be more helpful.

To summarize, materialized data can indeed be represented in most of the above sys-

tems (with the exception of TSIMMIS) as another information source. Creating a large

number of sources causes performance problems in all such systems. This is expected

as the general problem of query planning to gather information from multiple sources is

combinatorially hard and performance will remain an issue no matter what the source rep-

resentation and query language. We also note that not all of these systems have cost-based

query optimizers that can select a low cost query plan from several alternative query plans.

The query planner for any of the above systems will need to be augmented to perform cost

based query optimization in case it does not do so, to ensure that it generates plans using

the materialized data.
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8.2.2 Selecting Data to Materialize

The ideas for source structure analysis and query distribution analysis are general and can

be incorporated in any of the above systems to select classes of data to materialize. Not all

the above systems use query processing axioms as in SIMS that are used in source structure

analysis. Alternative approaches to incorporating source structure analysis would involve

either extending these systems to use precompiled axioms or develop modi�ed source

structure analysis procedures that do not use axioms.

8.2.3 Updates

The ideas for keeping the materialized classes of data up to date by periodically refreshing

them and also the update speci�cations can be incorporated into any of these systems.

The update approach is independent of the modeling and query planning approaches of a

mediator system and thus can be easily applied in any mediator system.

8.3 Summary

We discussed how the work in this thesis compares with other e�orts on optimizing per-

formance by similarly materializing or caching data. Materialization or caching in several

di�erent environments such as databases, Web servers and federated databases was con-

sidered. We then described in detail how our approach can be applied to several other

mediator systems that are based on an architecture similar to that of Ariadne.
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Chapter 9

Conclusion

I provide a conclusion of my thesis work followed by directions for future work.

9.1 Conclusion

The high query response time is an issue in information mediators. The response time is

high despite having e�cient query planners in mediators as often a large number of Web

pages have to be fetched from remote sources to answer a user's query. This dissertation

presents an approach to addressing the performance issue by locally materializing data.

We have presented a framework for materializing data in an information mediator envi-

ronment, argued that data must be selectively materialized and presented an approach

for automatically selecting data to materialize. We have implemented a materialization

system for the Ariadne mediator based on the ideas in this dissertation and demonstrated

its e�ectiveness in optimizing performance in several applications. The general approach

is applicable to other mediator systems that have been built using a similar architecture.

Experimental results demonstrate that the materialization system built on the ideas in

this thesis is indeed e�ective in optimizing performance. I now discuss some directions for

future work in this area.

9.2 Future Directions

The directions for future work from this research fall in two main categories. First are

directions for further improving or enhancing the existing functionalities of the materi-

alization system. They include adding support for handling multimedia types of data,

investigating interaction between the query planner and materialization system and au-

tomating the collection of data for cost estimation. There are aspects of my thesis work
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that I see bene�ting areas in databases and information management in addition to opti-

mizing mediator performance. For instance some of the ideas can be applied to semantic

caching, E-commerce, and semi-structured data management. I will now elaborate on each

of these.

9.2.1 Support for Multimedia Data

One direction in which mediator technology is advancing is to enable information medi-

ators to extract and integrate data from multimedia types of sources such as multimedia

data (text and images) from Web sources and data from text databases, image or video

databases that can be queried by content. Along with other components of a mediator

system there is then a demand for extending the materialization system as well to handle

multimedia types of data. An issue is that data like text, images or a video sequence often

takes up a lot more (local) space as compared to structured data. One solution could be

to materialize a summary of text for textual data or image thumbnails instead of the full

image so as to materialize a "summary" of the data without consuming too much space. I

plan to investigate other aspects as well in order to extend the materialization system for

multimedia data.

9.2.2 Interaction with Query Planner

The materialization system relies on the query planner to make the maximal use of the

materialized data in order to generate high quality plans. Our experiences show that that

a query planner capable of cost based query optimization does indeed generate plans that

use the materialized data in most cases. However there is no guarantee that this is always

the case i.e., the materialized data will be used optimally. A tighter coupling between

the query planner and the materialization system can be a solution to this problem. The

approach will be easier to develop in systems like Ariadne where precompiled axioms exist

that specify how data for a domain class can be obtained from one or more sources. As a

simple example, consider the axiom:

country(name,region,gdp,population,....) <->

ciafactbook(name,region,gdp,population,...)

Now suppose we materialized the primary key(name) and the attribute region of the class

country so that selection on the country attribute can be done locally. Instead of relying

on the query planner to generate plans that will use the materialized data to do selection

on the region attribute locally, we could simply rewrite the above axioms as:
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country(name,region,gdp,population,....) <-> region_materialized(name,region) and

ciafactbook(name,gdp,population,...)

This now ensures that the query planner will indeed use the materialized data to perform

selection on region locally. Another area of future work is thus to develop a tighter coupling

between the query planner and materialization system for Ariadne as well as other mediator

systems.

9.2.3 Automatically Collecting Speci�cations

At present we assume that we know apriori the time and frequency with which a particular

Web source changes. However for many sources, such as say a Web source providing

information about the computer science faculty at a university, the source may change

at any time. Techniques have been developed for automatic change detection [Chawathe

et al., 1996] in textual data, with a focus on semi-structured data from Web sources. It

would be useful for the materialization system to use such systems for detecting changes

at the Web sources instead of simply refreshing the data with an appropriate frequency

for that source.

We manually specify statistics about Web sources that enable the cost estimator to

estimate costs of various queries to the Web sources. There is recent work on develop-

ing more sophisticated cost models for wrapped Web sources and also learning response

times [Bright et al., 1999] for Web sources. We could use these systems to automatically

collect data (such as the time to retrieve a page from a particular Web source) that will

enable us to automatically assemble the statistics needed for a cost estimator instead of

having to specify this information manually.

Currently we also manually specify the space occupied by various attributes and the

size (number of tuples or objects) of a particular class. The collection of such data can be

automated by having a program to estimate class size by say queries that request for all

tuples in a class and attribute size by averaging over the size of a particular attribute in

di�erent tuples or objects.

9.2.4 Semantic Caching

As described earlier our materialization approach is a kind of semantic caching in the

mediator environment. The problem of containment checking is a hard problem is semantic

caching systems in databases. Our approach of systematically merging materialized classes

to form more compact and fewer classes can be a solution to this problem. I plan to
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investigate how classes that we consider for caching in database systems can be merged

and made more compact in a fashion similar to merging classes in CM. I will also evaluate

how this approach can address the containment checking problem for semantic caching and

compare it with other approaches for addressing the problem such as using approximate

cache descriptions or indexing the cached predicates.

9.2.5 Query Mining

The extraction of patterns in queries by CM can be viewed as \query mining" on a query

distribution. Extracting such patterns from user queries could be of interest in areas

besides materialization. One example is E-commerce where sellers may be interested in

analyzing online user queries and request to �nd classes of items (data) that users are most

interested in. The user pro�le may also be analyzed in addition to the queries. An example

of a useful pattern extracted for an online book store may be "college student customers

interested in humor/�ction mostly buy books by PG Wodehouse or Evelyn Waugh". It

would thus be useful to investigate how an algorithm like CM may be enhanced or modi�ed

to satisfy the needs of query mining in applications like E-commerce. The main di�erence

from data mining is that data mining is done on data whereas query mining is performed

on queries. Some enhancements needed for CM for query mining could be learning more

sophisticated descriptions and also augmenting the analysis of the user query distribution

with other inputs such as customer pro�les.

9.2.6 Querying Semi-structured Data

The interest in query semi-structured data is not limited to information mediators alone.

Systems such as W3QS [Konopnicki and Shmueli, September 1988] and WebSQL [Mendel-

zon et al., 1997] have been developed for structured database like querying of (single)

semi-structured Web sources. Besides querying these Web sources directly the purpose of

providing a semi-structured query interface may also be to enable warehousing the data

in a local text database for more structured querying. The aspects of this thesis dealing

with prefetching of data by analyzing the structure of Web sources and costs for various

queries could well be applied to optimizing such systems as well.

Both W3QS and Web SQL provide a high level SQL like query language for Web

documents and also have extended database query cost estimation techniques to Web

sources that can be queried in a structured manner. Thus our techniques for prefetching

by source structure analysis could be applied to predetermining expensive queries in these
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systems also and prefetching data to main local \views" to improve query response time

in such systems. Also our general approach to handling updates at the sources could be

applied to keeping these local views consistent.
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